Python实现直方图拉伸算法——图像增强

607 篇文章 ¥299.90 ¥399.90
本文详细介绍了Python实现直方图拉伸算法的过程,这是一种图像增强技术,通过调整图像像素灰度值,增加图像对比度。文章包括直方图拉伸原理、线性变换函数的运用以及Python代码实现,展示了如何读取图像,计算最小最大灰度值,映射到[0,255]范围,并绘制直方图。" 138591726,14586329,微信小程序:地理定位与周边信息获取实战,"['微信小程序', '地图服务', 'API开发', '移动开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现直方图拉伸算法——图像增强

在数字图像处理中,直方图是一种常见的工具。直方图拉伸(histogram stretch)是常用的图像增强方法之一,它可以通过调整图像像素的灰度值范围,增加图像对比度和显示效果。本篇文章将介绍如何使用Python实现直方图拉伸算法,以实现图像的增强。

直方图拉伸原理

直方图拉伸的原理很简单:把图像原本的最小灰度值映射到0,最大灰度值映射到255,中间的灰度值按比例进行映射。 由于我们希望把图像的灰度范围“打散”到[0,255]的范围内,因此需要找到一种映射函数f(x),使得原来在某个灰度级上的颜色映射到在[0,255]范围内的某个灰度级上。在这里,我们使用线性变换函数:

f(x) = (x-min)/(max-min) * 255

其中,min和max分别为图像中出现的最小和最大像素值,x是待映射的像素灰度值。为了避免对图像的整体亮度造成影响,对多数图像来说,我们通常忽略一小部分的超出灰度范围的像素值。

Python实现

下面我们通过Python实现直方图拉伸算法,代码如下:

import numpy as np
from PIL import Image
import matpl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值