数字图像处理学习笔记:灰度变换与空间滤波及其Python实现

607 篇文章 ¥299.90 ¥399.90
本文介绍了数字图像处理中的灰度变换和空间滤波概念,包括线性变换、非线性变换(如gamma校正、对数变换)、直方图均衡化,以及空间滤波的平滑滤波和边缘检测滤波,并提供了相应的Python代码实现。

数字图像处理学习笔记:灰度变换与空间滤波及其Python实现

数字图像处理是计算机视觉领域的基础课程之一。在图像处理的过程中,灰度变换和空间滤波是最基本的两个概念,也是最常用的技术之一。本文将对这两个概念进行简单的介绍,并使用Python代码演示常见的灰度变换方法。

一、灰度变换
灰度变换是指将原图像像素灰度级映射到另一组灰度级的过程。它可以通过修改像素的亮度和对比度来改善图像的质量。常见的灰度变换方法包括线性变换、非线性变换和直方图均衡化。

1.线性变换
线性变换是指将原图像的灰度级缩放到另一组灰度级。它是最基本的灰度变换方法,可以通过以下公式进行计算:

def linear_transform(image):
   a, b = np.min(image