万字长文详解深度学习中元学习与小样本问题:如何理解模型自己学会学习?传统的监督学习与 Meta Learning 之间的区别?预训练的三个小改进?如何通过孪生网络完成元学习~

深度学习模型训练模型特别吃计算硬件,尤其是人为调超参数时候,更需要大量的计算。另一个头疼的问题是在某个任务下大量数据训练的模型,切换到另一个任务后,模型就需要重新训练,这样非常耗时耗力。

工业界财大气粗有大量的 GPU 可以承担起这样的计算成本,但是学术界因为经费有限经不起这样的消耗。元学习(meta-learning)可以有效的缓解大量调参和任务切换模型重新训练带来的计算成本问题。

1 元学习介绍

元学习希望使得模型获取一种学会学习调参的能力,使其可以在获取已有知识的基础上快速学习新的任务。

机器学习是先人为调参,之后直接训练特定任务下深度模型。

元学习则是先通过其它的任务训练出一个较好的超参数,然后再对特定任务进行训练。

在这里插入图片描述

这些超参数可以是初始化参数、选择优化器、定义损失函数、梯度下降更新参数等。

在这里插入图片描述

2 元学习流程

在机器学习中,训练单位是样本数据,通过数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

布尔大学士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值