机器学习 - 梯度下降在多参数线性回归模型的应用以及解析

我们通过一个具体的例子来演示多变量线性回归中的梯度下降算法。

示例数据集

假设我们有一个简单的数据集,包含两个特征和一个目标值:

(x_1) (x_2) (y)
1 2 5
2 3 8
3 4 11
4 5 14

我们要训练一个线性回归模型,模型的形式为:
fw,b(x)=w1⋅x1+w2⋅x2+bf_{w,b}(x) = w_1 \cdot x_1 + w_2 \cdot x_2 + bfw,b(x)=w1x1+w2x2+b

梯度下降步骤

我们从随机初始化的参数 w1w_1w1w2w_2w2bbb 开始,然后通过梯度下降算法迭代地更新这些参数。

初始化

假设:

  • 初始权重w1=0w_1 = 0w1=0w2=0w_2 = 0w2=0
  • 初始偏置 b=0b = 0b=0
  • 学习率 α=0.01\alpha = 0.01α=0.01
  • 迭代次数为 2 次(为了简洁)

计算梯度

我们需要计算每个参数的偏导数,并用这些偏导数来更新参数。

第一次迭代

计算偏导数
  1. 计算预测值和误差:
    预测值fw,b(x(i))=w1⋅x1(i)+w2⋅x2(i)+b \text{预测值} \quad f_{w,b}(x^{(i)}) = w_1 \cdot x_1^{(i)} + w_2 \cdot x_2^{(i)} + b 预测值fw,b(x(i))=w1x1(i)+w2x2(i)+b
    对于每个样本,我们计算预测值和误差:

    • 对于第一个样本 (1, 2, 5):
      fw,b(x(1))=0⋅1+0⋅2+0=0误差=0−5=−5 f_{w,b}(x^{(1)}) = 0 \cdot 1 + 0 \cdot 2 + 0 = 0 \\ \text{误差} \quad = 0 - 5 = -5 fw,b(x(1))=01+02+0=0误差=05=5
    • 对于第二个样本 (2, 3, 8):
      fw,b(x(2))=0⋅2+0⋅3+0=0误差=0−8=−8 f_{w,b}(x^{(2)}) = 0 \cdot 2 + 0 \cdot 3 + 0 = 0 \\ \text{误差} \quad = 0 - 8 = -8 fw,b(x(2))=0
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Violent-Ayang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值