python数组切片

NumPy数组切片(Slicing)

NumPy是Python中用于科学计算的一个库,它提供了对大规模多维数组和矩阵的支持。切片(slicing)是从这些数组中提取子数组的一个强大工具。

基本切片语法

基本的切片语法是start:stop:step,它可以用于一维和多维数组。让我们一步步来理解。

一维数组的切片

假设我们有一个一维NumPy数组:

import numpy as np

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
  • arr[start:stop:step]:选择从索引start到索引stop(不包括stop)的元素,步长为step

示例:

print(arr[2:7])      # [2 3 4 5 6]
print(arr[2:7:2])    # [2 4 6]
print(arr[:5])       # [0 1 2 3 4]
print(arr[5:])       # [5 6 7 8 9]
print(arr[::2])      # [0 2 4 6 8]
print(arr[::-1])     # [9 8 7 6 5 4 3 2 1 0]  逆序
多维数组的切片

对于多维数组,切片操作适用于每一个维度。假设我们有一个二维数组:

arr_2d = np.array([
    [0, 1, 2, 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Violent-Ayang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值