必看!手把手教你玩转Dify的3大核心工具!

Dify 中的工具是指其平台内置或支持集成的功能插件,用于扩展 AI 应用的能力

1.工具作用

  1. 扩展 LLM 的能力:工具可以赋予 LLM 连接外部世界的能力,例如联网搜索、科学计算、绘制图片等。例如,通过集成谷歌搜索工具,AI 助手可以回答实时问题。
  2. 完成复杂任务:工具可以帮助 LLM 进行任务推理、步骤拆解和工具调用,从而完成复杂的任务。例如,在开发数据报表生成助手时,可以通过连接数据库工具获取数据,再利用数据分析工具进行处理,最后借助文件处理工具将结果生成报表。
  3. 与其他系统或服务连接:工具可以方便地将 Dify 应用与其他系统或服务连接,实现与外部环境的交互。例如,通过集成邮件发送工具,可以实现自动发送邮件的功能。

2.工具分类

Dify 中工具分为以下 3 种类型:

  1. 内置工具:Dify 第一方提供的工具,使用该工具前可能需要先给工具进行 授权。
  2. 自定义工具:如果内置工具无法满足使用需求,你可以在 Dify 菜单导航 —工具,内创建自定义工具。你可以通过 OpenAPI/Swagger 标准格式导入或配置的工具,但在此之前你需要预先提供自定义服务器端,Http 协议的接口,让 Dify 进行调用。
  3. 工作流:你可以编排一个更复杂的工作流,并将其发布为工具。详细说明请参考工具配置说明

3.内置工具

内置工具可以点击“插件”、“市场”,通过浏览或搜索进行安装,如下图所示:

4.自定义工具

自定义工具实现分为以下两步:

  1. HTTP 协议的自定义服务器端,用于处理某个业务逻辑。
  2. 使用 OpenAPI/Swagger 协议将其添加到 Dify 中。

自定义的服务器端使用任何语言都可以,只要是 HTTP 协议即可,OpenAI/Swagger 协议如下。

例如添加一个天气预报的协议:

配置如下:

{
  "openapi": "3.1.0",
  "info": {
    "title": "Get weather data",
    "description": "Retrieves current weather data for a location.",
    "version": "v1.0.0"
  },
  "servers": [
    {
      "url": "https://weather.example.com"
    }
  ],
  "paths": {
    "/location": {
      "get": {
        "description": "Get temperature for a specific location",
        "operationId": "GetCurrentWeather",
        "parameters": [
          {
            "name": "location",
            "in": "query",
            "description": "The city and state to retrieve the weather for",
            "required": true,
            "schema": {
              "type": "string"
            }
          }
        ],
        "deprecated": false
      }
    }
  },
  "components": {
    "schemas": {}
  }
}

5.工作流

工作流就是将 Dify 中创建的 WorkFlow 发布为工具,让 Dify 其他地方进行调用:

小结

工具是扩展大模型能力边界的主要手段,也是实现复杂任务的核心机制,正确、灵活的使用工具是我们开发 AI 应用中必不可少的技能。一起行动起来,体验一下 Dify 中好玩又有用的这些插件吧。

本文已收录到我的技术小站 www.javacn.site,其中包含的内容有:Spring AI、LangChain4j、Dify、AI Agent、MCP、Function Call、RAG、向量数据库、Prompt、多模态、向量数据库、嵌入模型等内容。

<think>好的,我现在需要帮助用户了解如何使用Qwen3大模型搭建本地知识库。根据用户提供的引用内容,之前他们部署了Qwen2.5模型,现在想升级到Qwen3。我需要结合之前的回答和引用中的信息,给出一个清晰的步骤指南。 首先,用户提到了Ollama和Dify的部署,所以可能需要在程中包含这些工具的使用。用户之前部署了Qwen2.5,现在转向Qwen3,我需要确认Qwen3是否支持类似的部署方法,或者是否需要额外的步骤。 接下来,用户提到要结合本地知识库作为Dify的上下文,这意味着需要将知识库集成到Dify中,可能涉及文档加载、向量化存储和检索增强生成(RAG)的应用。这部分需要详细说明如何处理知识库文件,如何配置Dify来使用这些数据。 另外,用户提供的引用中有关于资料领取的部分,但根据系统指令,应避免无关推广,所以需要忽略这部分内容,专注于技术步骤。 还需要考虑用户可能的痛点,比如环境配置、模型下载、知识库格式要求等。需要分步骤解释,确保用户能逐步操作,同时注意技术细节的正确性,比如正确的Ollama命令、Dify的配置参数等。 最后,生成相关问题时要围绕搭建过程中的常见问题、优化方法和应用场景展开,帮助用户进一步探索。</think>### 使用Qwen3大模型搭建本地知识库的详细程 #### 一、环境准备与模型部署 1. **私有化部署Qwen3模型** 使用Ollama工具部署Qwen3模型(7B或更高参数版本): ```bash # 拉取Qwen3模型(假设已支持) ollama pull qwen3:7b # 启动模型服务 ollama serve ``` 若官方未直接支持,可手动构建`Modelfile`: ```dockerfile FROM qwen/qwen3:7b PARAMETER temperature 0.7 SYSTEM "你是一个专业的知识库问答助手" ``` 2. **验证模型可用性** 通过CURL测试API接口: ```bash curl http://localhost:11434/api/generate -d &#39;{ "model": "qwen3:7b", "prompt": "量子力学三大基本原理是什么?" }&#39; ``` #### 二、知识库构建与处理 1. **文档格式规范** - 支持格式:PDF/TXT/MarkDown/HTML - 推荐预处理:使用Python库清洗文本 ```python from bs4 import BeautifulSoup def clean_html(raw_html): soup = BeautifulSoup(raw_html, "html.parser") return soup.get_text() ``` 2. **向量化存储** 使用LangChain构建向量数据库: ```python from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh") documents = [...] # 预处理后的文档列表 vector_db = FAISS.from_documents(documents, embeddings) vector_db.save_local("my_knowledge_base") ``` #### 三、Dify平台集成(社区版) 1. **部署Dify服务** ```bash git clone https://github.com/langgenius/dify cd dify/docker docker-compose up -d ``` 2. **配置知识库连接** 在Dify控制台: - 新建应用 → 选择「知识库问答」 - 上传预处理文档或连接现有向量库 - 设置检索参数: ```yaml retriever: search_type: "similarity" k: 5 score_threshold: 0.7 ``` 3. **RAG流程配置** ```python # 自定义处理链示例 from langchain_core.runnables import RunnablePassthrough retriever = vector_db.as_retriever() qa_chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt_template | llm | output_parser ) ``` #### 四、效果优化技巧 1. **混合检索策略** 结合关键词搜索与向量检索: ```python from langchain.retrievers import BM25Retriever, EnsembleRetriever bm25_retriever = BM25Retriever.from_documents(docs) ensemble_retriever = EnsembleRetriever( retrievers=[bm25_retriever, vector_retriever], weights=[0.4, 0.6] ) ``` 2. **查询扩展** 使用Query2Doc技术增强检索: ```python from transformers import pipeline expander = pipeline("text-generation", model="Qwen/Qwen1.5-7B") expanded_query = expander(f"生成与&#39;{query}&#39;相关的三个扩展问题") ``` #### 五、监控与维护 1. **日志分析配置** ```bash # 查看Dify请求日志 docker logs -f dify-api ``` 2. **知识库更新机制** ```python # 增量更新脚本示例 def update_knowledge(new_docs): global vector_db vector_db.add_documents(new_docs) vector_db.save_local("my_knowledge_base") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sufu1065

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值