Synthetic Data & Artificial Neural Networks for Natural Scene Text Recognition

Mark Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman

OUTLINE

- Objective
- Challenges
- Synthetic Data Engine
- Models
- Experiments and Results
- Discussion and Questions

Objective

To build a framework for Text Recognition in Natural Images

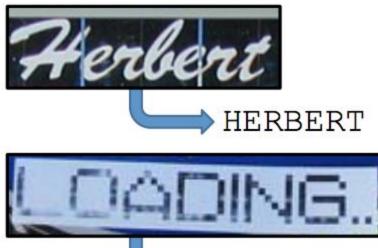


Image Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

Challenges

- Inconsistent lighting, distortions, background noise, variable fonts, orientations etc..
- Existing Scene Text datasets are very small and cover limited vocabulary.

Synthetic Data Engine

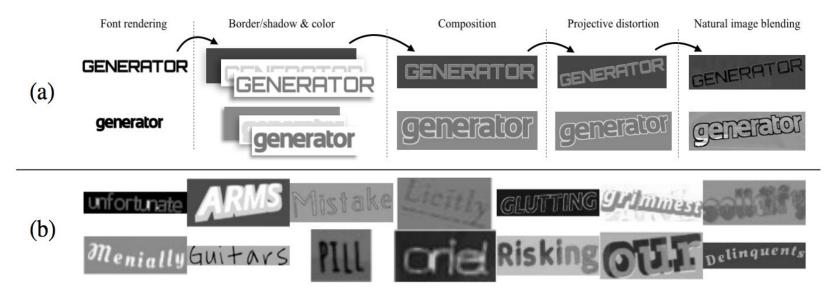


Figure 1: (a) The text generation process after font rendering, creating and coloring the imagelayers, applying projective distortions, and after image blending. (b) Some randomly sampled data created by the synthetic text engine.

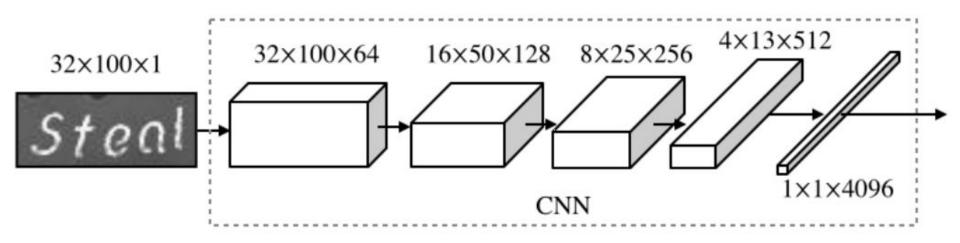
Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition

Models

Authors propose 3 Deep Learning Models:

- Dictionary Encoding
- Character Sequence Encoding
- Bag of NGrams encoding

Base Architecture



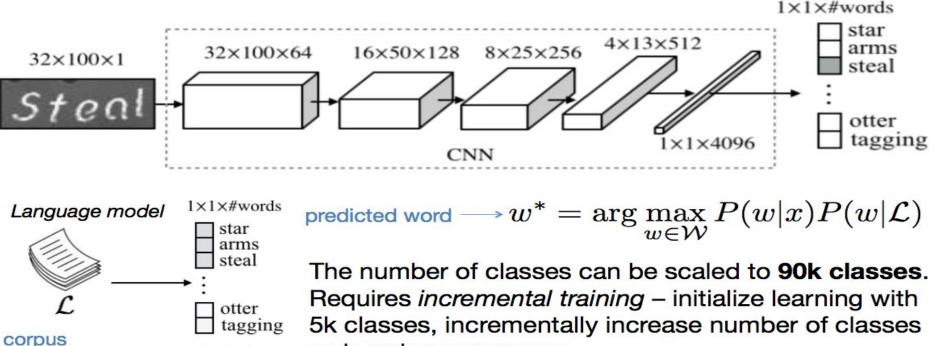
- 2 x 2 Max Pooling after 1st, 2nd and 3rd Convolutional Layer
- SGD for optimization
- Dropout for regularization

Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition

Dictionary Encoding (DICT) [Constrained Language Model]

Multiclass Classification Problem (One class per word *w* in Dictionary *W*)

(movie subtitles)

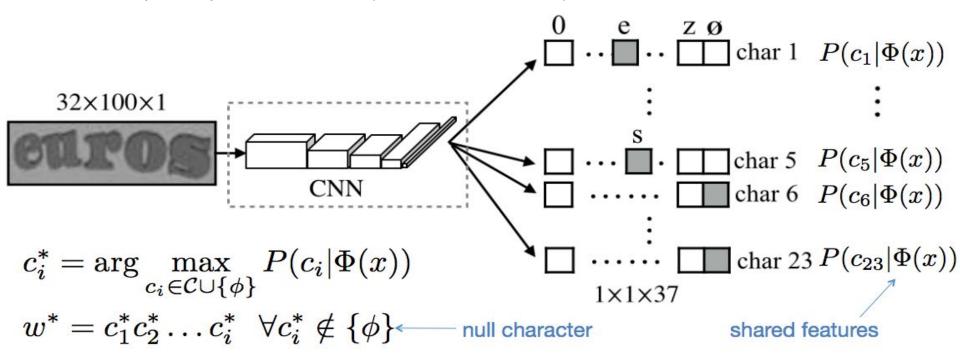


 $P(w|\mathcal{L})$ as learning progresses.

Slide Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

Character Sequence Encoding (CHAR)

CNN with multiple independent classifiers (one for each character)



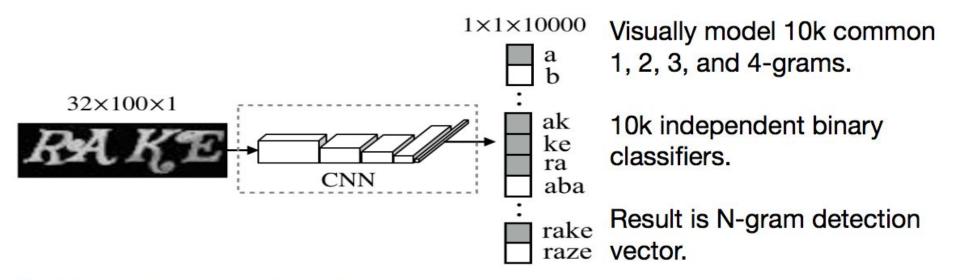
- No language model but need to fix max length of the word.
- Suitable for unconstrained recognition

Slide Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

BAG of N-Grams Encoding (NGRAM)

Represent a word as bag of N-grams.

Eg G(Spires) = { s, p, i, r, e, s, sp, pi, ir, re, es, spi, pir, ire, res }



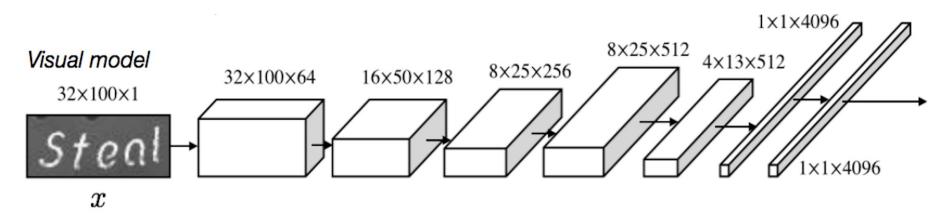
Two ways to recover words:

- Find nearest neighbour of output with ideal outputs of dictionary words.
- Train a linear SVM for each dictionary word, using training data outputs.

Slide Credits: <u>Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)</u>

+2 Models

- Lack of overfitting on basic models suggests their under-capacity.
- Try larger models to investigate the effect of additional model capacity.



- Extra convolutional layer with 512 filters
- Extra 4096 unit fully connected layer at the end

Experiments and Results

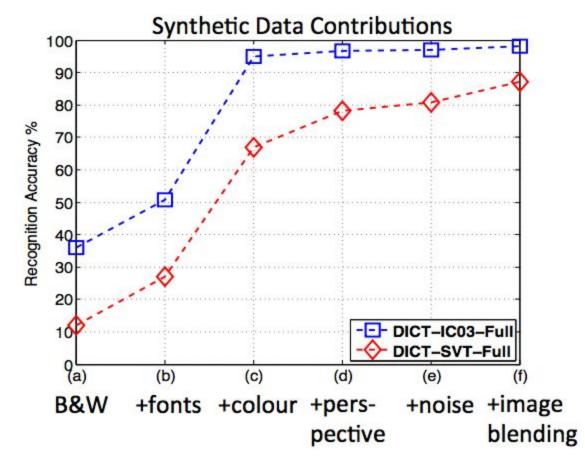


Image Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

Base Models vs +2 Models

Model	Trained Lexicon	Synth	IC03-50	IC03	SVT-50	SVT	IC13
DICT IC03 FULL	IC03 FULL	98.7	99.2	98.1	-	-	-
DICT SVT FULL	SVT FULL	98.7	-	-	96.1	87.0	-
DICT 50K	50K	93.6	99.1	92.1	93.5	78.5	92.0
DICT 90K	90K	90.3	98.4	90.0	93.7	70.0	86.3
DICT +2 90K	90K	95.2	98.7	93.1	95.4	80.7	90.8
CHAR	90K	71.0	94.2	77.0	87.8	56.4	68.8
CHAR +2	90K	86.2	96.7	86.2	92.6	68.0	79.5
NGRAM NN	90K	25.1	92.2	-	84.5	-	-
NGRAM +2 NN	90K	27.9	94.2	-	86.6	-	-

Quality of Synthetic Data

Model	Trained Lexicon	Synth	IC03-50	IC03	SVT-50	SVT	IC13
DICT IC03 FULL	IC03 FULL	98.7	99.2	98.1	-	-	-
DICT SVT FULL	SVT FULL	98.7	-	-	96.1	87.0	-
DICT 50K	50K	93.6	99.1	92.1	93.5	78.5	92.0
DICT 90K	90K	90.3	98.4	90.0	93.7	70.0	86.3
DICT +2 90K	90K	95.2	98.7	93.1	95.4	80.7	90.8
CHAR	90K	71.0	94.2	77.0	87.8	56.4	68.8
CHAR +2	90K	86.2	96.7	86.2	92.6	68.0	79.5
NGRAM NN	90K	25.1	92.2	-	84.5	-	-
NGRAM +2 NN	90K	27.9	94.2	-	86.6	-	-

Effect of Dictionary Size

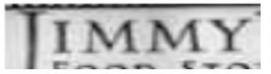
Model	Trained Lexicon	Synth	IC03-50	IC03	SVT-50	SVT	IC13
DICT IC03 FULL	IC03 FULL	98.7	99.2	98.1	-	-	-
DICT SVT FULL	SVT FULL	98.7	-	-	96.1	87.0	-
DICT 50K	50K	93.6	99.1	92.1	93.5	78.5	92.0
DICT 90K	90K	90.3	98.4	90.0	93.7	70.0	86.3
DICT +2 90K	90K	95.2	98.7	93.1	95.4	80.7	90.8
CHAR	90K	71.0	94.2	77.0	87.8	56.4	68.8
CHAR +2	90K	86.2	96.7	86.2	92.6	68.0	79.5
NGRAM NN	90K	25.1	92.2	-	84.5	-	-
NGRAM +2 NN	90K	27.9	94.2	-	86.6	-	-

	IC03-50	IC03-	SVT-50	SVT	IC13	IIIT5k-50	lliT5k-1k
Model		Full					
Baseline (ABBYY)	56.0	<mark>55.0</mark>	35.0	-	-	24.3	-
Wang, ICCV '11	76.0	<mark>62.0</mark>	57.0	-	-	-	-
Bissacco, ICCV '13	-	-	90.4	78.0	87.6	-	-
Yao, CVPR '14	88.5	80.3	75.9	-	-	80.2	69.3
Jaderberg, ECCV '14	96.2	<mark>91.5</mark>	86.1	-	-	-	-
Gordo, arXiv '14	-	-	90.7	-	-	93.3	86.6
DICT-IC03-Full	99.2	98.1	-	-	-	-	-
DICT-SVT-Full	-	-	96.1	87.0	-	-	-
DICT+2-90k	98.7	98.6	95.4	80.7	90.8	97.1	92.7
CHAR+2	96.7	94.0	92.6	68.0	79.5	95.5	85.4
NGRAM+2-SVM	96.5	94.0	-	-	-	-	-

Slide Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

Examples

DICT: pizza CHAR: pizz



DICT: jimmy CHAR: limmy

a, n, o, t, at, io, on, ti, za, ati, ion, iza, tio, zat, tion, atio, izat, zati

i, n, y, im, ji, mm, my, imm, imn, lim, mim, mmy, tim, immi

z, zz, izz

DICT: organization CHAR: organaation

CHAR: western

DICT: western

a, n, o, t, at, io, on, ti, za, ati, ion, iza, tio, zat, tion, atio, izat, zati

Image Credits: Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

Applications

- Image Retrieval
- Self Driving Cars

Discussion and Questions

- How fair is it to assume knowledge of target lexicon?
- Has synthetic data been used in any other domains?
- Can we use RNN models for predicting words character level classification ?
- Are there better ways of mapping Ngrams to words?
- How are collisions handled in Ngrams model?
- How diverse does the text synthesis output need to be?

[1] Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition

[2] Synthethic Data and Artificial Neural Networks for Natural Scene Text Recognition (Poster)

Thank You :)