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ABSTRACT

A new emerging class of parallel database management systems
(DBMS) is designed to take advantage of the partitionable work-
loads of on-line transaction processing (OLTP) applications [23,
20]. Transactions in these systems are optimized to execute to com-
pletion on a single node in a shared-nothing cluster without need-
ing to coordinate with other nodes or use expensive concurrency
control measures [18]. But some OLTP applications cannot be par-
titioned such that all of their transactions execute within a single-
partition in this manner. These distributed transactions access data
not stored within their local partitions and subsequently require
more heavy-weight concurrency control protocols. Further difficul-
ties arise when the transaction’s execution properties, such as the
number of partitions it may need to access or whether it will abort,
are not known beforehand. The DBMS could mitigate these per-
formance issues if it is provided with additional information about
transactions. Thus, in this paper we present a Markov model-based
approach for automatically selecting which optimizations a DBMS
could use, namely (1) more efficient concurrency control schemes,
(2) intelligent scheduling, (3) reduced undo logging, and (4) spec-
ulative execution. To evaluate our techniques, we implemented our
models and integrated them into a parallel, main-memory OLTP
DBMS to show that we can improve the performance of applica-
tions with diverse workloads.

1. INTRODUCTION

Shared-nothing parallel databases are touted for their ability to
execute OLTP workloads with high throughput. In such systems,
data is spread across shared-nothing servers into disjoint segments
called partitions. OLTP workloads have three salient characteris-
tics that make them amenable to this environment: (1) transactions
are short-lived (i.e., no user stalls), (2) transactions touch a small
subset of data using index look-ups (i.e., no full table scans or large
distributed joins), and (3) transactions are repetitive (i.e., executing
the same queries with different inputs) [23].

Even with careful partitioning [7], achieving good performance
with this architecture requires significant tuning because of dis-
tributed transactions that access multiple partitions. Such trans-
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actions require the DBMS to either (1) block other transactions
from using each partition until that transaction finishes or (2) use
fine-grained locking with deadlock detection to execute transac-
tions concurrently [18]. In either strategy, the DBMS may also need
to maintain an undo buffer in case the transaction aborts. Avoiding
such onerous concurrency control is important, since it has been
shown to be approximately 30% of the CPU overhead for OLTP
workloads in traditional databases [14]. To do so, however, requires
the DBMS to have additional information about transactions be-
fore they start. For example, if the DBMS knows that a transaction
only needs to access data at one partition, then that transaction can
be redirected to the machine with that data and executed without
heavy-weight concurrency control schemes [23].

It is not practical, however, to require users to explicitly inform
the DBMS how individual transactions are going to behave. This
is especially true for complex applications where a change in the
database’s configuration, such as its partitioning scheme, affects
transactions’ execution properties. Hence, in this paper we present
anovel method to automatically select which optimizations the DB-
MS can apply to transactions at runtime using Markov models. A
Markov model is a probabilistic model that, given the current state
of a transaction (e.g., which query it just executed), captures the
probability distribution of what actions that transaction will per-
form in the future. Based on this prediction, the DBMS can then
enable the proper optimizations. Our approach has minimal over-
head, and thus it can be used on-line to observe requests to make im-
mediate predictions on transaction behavior without additional in-
formation from the user. We assume that the benefit outweighs the
cost when the prediction is wrong. This paper is focused on stored
procedure-based transactions, which have four properties that can
be exploited if they are known in advance: (1) how much data
is accessed on each node, (2) what partitions will the transaction
read/write, (3) whether the transaction could abort, and (4) when
the transaction will be finished with a partition.

We begin with an overview of the optimizations used to improve
the throughput of OLTP workloads. We then describe our primary
contribution: representing transactions as Markov models in a way
that allows a DBMS to decide which of these optimizations to em-
ploy based on the most likely behavior of a transaction. Next, we
present Houdini, an on-line framework that uses these models to
generate predictions about transactions before they start. We have
integrated this framework into the H-Store system [2] and measure
its ability to optimize three OLTP benchmarks. The results from
these experiments demonstrate that our models select the proper
optimizations for 93% of transactions and improve the throughput
of the system by 41% on average with an overhead of 5% of the
total transaction execution time. Although our work is described in
the context of H-Store, it is applicable to similar OLTP systems.
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Figure 1: The H-Store Main Memory OLTP system.
2. TRANSACTION OPTIMIZATIONS

We first discuss the optimizations that are possible if one knows
what a transaction will do prior to its execution in a stored procedure-
based DBMS. Stored procedures are an effective way to optimize
OLTP applications because they reduce the number of round-trips
between the client and the database, thereby eliminating most net-
work overhead and shrinking the window for lock contention. They
contain parameterized queries separated by control code (i.e., appli-
cation logic), and thus most DBMSs do not know what each trans-
action invocation of a procedure will do at run time (e.g., what set of
pre-defined queries it will execute and what partitions those queries
will access). This is because the procedure can contain loops and
conditionals that depend on the parameters from the application and
the current values stored in the database.

One example of this type of system is H-Store, a parallel, row-
storage relational OLTP DBMS that runs on a cluster of shared-
nothing, main memory-only nodes [23, 20]. It is currently being
developed by Brown, M.I.T., and Yale [2]. A commercial version,
called VoltDB, is also being developed based on its design. As
shown in Fig. 1, an H-Store node consists of a transaction coor-
dinator that manages single-threaded execution engines, each with
exclusive access to a data partition stored in memory. Client appli-
cations initiate transactions by sending the pre-defined procedure
name and input to any node in the cluster.

We now discuss the four transaction optimizations that OLTP
systems like H-Store can employ at run time if they know certain
properties about transactions before they begin to execute.

OP1. Execute the transaction at the node with the partition that
it will access the most.

When a new transaction request is received, the DBMS’s trans-
action coordinator must determine which node in the cluster should
execute the procedure’s control code and dispatch queries. In most
systems, this node also manages a partition of data. We call this
the base partition for a transaction. The “best” base partition is
the one containing most of the data that will be accessed by that
transaction, as that reduces the amount of data movement. Any
transaction that needs to access only one data partition is known as
a single-partition transaction. These transactions can be executed
efficiently on a parallel DBMS, as they do not require multi-node
coordination [23]. Hence, determining the correct base partition
will dramatically increase throughput and decrease latency in any
distributed database that supports stored procedures.

One naive strategy is to execute each transaction on a random
partition to evenly distribute work, but the likelihood that this ap-
proach picks the “wrong” partition increases with the number of
partitions. An alternative approach, used by IBM’s DB2, is to
execute the procedure on any node, then if the first statement ac-
cesses data in some other partition, abort and re-start the transaction
there [6]. This heuristic does not work well, however, for transac-
tions where the first statement accesses data in the wrong partition
or a large number of partitions all at once.

OP2. Lock only the partitions that the transaction accesses.

Similarly, knowing all of the partitions that each transaction will
access allows the DBMS to avoid traditional concurrency control.
If a single-partition transaction will only access data from its base
partition, then it can be executed to completion without any con-
currency control. Otherwise, the DBMS will “lock” the minimum
partitions needed before the transaction starts; partitions that are
not involved will process other transactions. Accurately predicting
which partitions are needed allows the DBMS to avoid the overhead
of deadlock detection and fine-grained row-based locking [18]. But
if a transaction accesses an extra partition that was not predicted,
then it must be aborted and re-executed. On the other hand, if the
DBMS predicts that a transaction will access multiple partitions but
only ends up accessing one, then resources are wasted by keeping
unused partitions locked.

OP3. Disable undo logging for non-aborting transactions.

Since a parallel DBMS replicates state over multiple nodes, per-
sistent logging in these environments is unnecessary [3, 14]. These
systems instead employ a transient undo log that is discarded once
the transaction has committed [23]. The cost of maintaining this
log per transaction is large relative to its overall execution time,
especially for those transactions that are unlikely to abort (exclud-
ing DBMS failures). Thus, if the DBMS can be guaranteed that
a transaction will never abort after performing a write operation,
then logging can be disabled for that transaction. This optimization
must be carefully enabled, however, since the node must halt if a
transaction aborts without undo logging.

This optimization is applicable to all main-memory DBMSs, as
undo logging is only needed to abort a transaction and not for re-
covery as used in disk-based systems. This also assumes that that
each procedure’s control code is robust and will not abort due to
programmer error (e.g., divide by zero).

OP4. Speculatively commit the transaction at partitions that it
no longer needs to access.

The final optimization that we consider is using speculative exe-
cution when a distributed transaction is finished at a partition. For
distributed transactions, many DBMSs use two-phase commit to
ensure consistency and atomicity. This requires an extra round of
network communication: the DBMS sends a prepare message to all
partitions and must wait for all of the acknowledgements before it
can inform the client that the transaction committed. If the DBMS
can identify that a particular query is the last operation that a trans-
action will perform at a partition, then that query and the prepare
message can be combined. This is called the “early prepare” or “un-
solicited vote” optimization, and has been shown to improve both
latency and throughput in parallel systems [21].

Once a node receives this early prepare for the distributed trans-
action, the DBMS can begin to process other queued transactions
at that node [4, 18]. If these speculatively executed transactions
only access tables not modified by the distributed transaction, then
they will commit immediately once they are finished. Otherwise,
they must wait until the distributed transaction commits. This opti-
mization is similar to releasing locks early in traditional databases’
two-phase commit prepare phase [8].

Predicting whether a query is the last one for a given partition
is not straightforward for the traditional “conversational” interface
because the DBMS does not know what the clients will send next.
But even for stored procedures this is not easy, as conditional state-
ments and loops make it non-trivial to determine which queries will
be executed by the transaction. As with the other optimizations, the
DBMS will have to undo work if it is wrong. If a transaction ac-
cesses a partition that it previously declared to be finished with,



class NewOrder extends StoredProcedure {

Query GetWarehouse = "SELECT * FROM WAREHOUSE WHERE W ID = ?";
Query CheckStock = "SELECT S QTY FROM STOCK

WHERE S W ID = 7 AND S I ID = ?7";
“INSERT INTO ORDERS VALUES (?,7)";

“INSERT INTO ORDER LINE VALUES (?,7,7,7)";
“UPDATE STOCK SET S QTY = S QTY - ?
WHERE S W ID = ? AND S I ID = 7";

2 Yint runfint w id, int i ids[], int i w ids[], int i qtys[]Y
» queueSQL (GetWarehouse, w_id);
for (int i = 0; i < i_ids.length; i++)
queueSQL (CheckStock, i w ids[i], iiids[i])j
Result r[] = executeBatch();
int o_id = r[0].get ("W _NEXT 0 _ID") + 1
queueSQL (InsertOrder, w_id, o_id);
for (int i = 0; i < r.length; i++) {
if (r[i+1].get("S _QTY") < i qtys[i]) abort();
queueSQL(InsertOrderLine, w_id, o_id, i_ids[i], i_qtys[i]);
queueSQL (UpdateStock, i qtys[i], i_w_ids[i], i ids[i]);
}
return (executeBatch() != null);

<
Figure 2: A stored procedure defines (1) a set of parameterized
queries and (2) control code. For each new transaction request,
the DBMS invokes the procedure’s run method and passes in (3)
the procedure input parameters sent by the client. The transaction
invokes queries by passing their unique handle to the DBMS along
with the values of its (4) query input parameters.

Query InsertOrder
Query InsertOrdLine
Query UpdateStock

then that transaction and all speculatively executed transactions at
the partition are aborted and restarted.

2.1 Motivating Example

To demonstrate how the above optimizations improve transac-
tion throughput, we consider an example from the TPC-C bench-
mark [24]. A simplified version of the TPC-C NewOrder stored
procedure is shown in Fig. 2. Approximately 90% of the New—
Order requests create orders using items from a single warehouse.
If the database is partitioned by warehouse ids (w_id), then most of
these requests are executed as single-partitioned transactions [23].

We executed NewOrder transactions using H-Store in three dif-
ferent ways: (1) all requests are assumed to be distributed and are
executed on a random node locking all partitions; (2) all requests
are assumed to be single-partitioned and are executed on a random
node, and if the transaction tries to access multiple partitions it is
aborted and restarted as a distributed transaction that locks the par-
titions it tried to access before it was aborted; and (3) the client
provides the system with the partitions needed for each request and
whether it will abort, and the DBMS only locks the necessary parti-
tions. This last case is the best possible scenario for the DBMS. We
execute each configuration using five different cluster sizes, with
two partitions/warehouses assigned per node. Transaction requests
are submitted from clients executing on separate machines in the
cluster. Each trial is executed three times and we report the average
throughput of the three runs. in Section 6.

The results in Fig. 3 show the significance of knowing what a
transaction will do before it executes in a system like H-Store. The
throughput for the “assume distributed” case is constant for all clus-
ter sizes because the DBMS is limited to the rate that it can send and
receive the two-phase commit acknowledgements. When there are
only a small number of partitions, the other strategies are roughly
equivalent because the likelihood that a transaction is on the parti-
tion that has the data it needs is higher. The throughput of H-Store,
however, scales better when the system has the proper information
before a transaction begins, as opposed to restarting a transaction
once it deviates from the single-partitioned assumption.

3. TRANSACTION MODELS

The throughput improvements in the previous experiment require
the application to specify exactly which partitions will be accessed
and whether the transaction will abort, which depends on how the
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Figure 3: The throughput of the system on different partition
sizes using three different execution scenarios: (1) All transac-
tions are executed as distributed; (2) All transactions are exe-
cuted as single-partitioned, distributed transactions are restarted;
(3) Single-partition transactions run without concurrency control
and distributed transactions lock the minimum number of partitions.
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data is partitioned and the state of the database. This adds addi-
tional burden on developers. Worse, this will change any time the
database is reorganized. An alternative approach is to model trans-
actions in such a way that allows the DBMS automatically extract
properties for each new transaction and then dynamically enable
optimizations without needing to modify the application’s code.
Markov models are an excellent fit for our problem because they
can be both generated quickly and used to estimate transaction prop-
erties without expensive computations [17]. The latter is important
for OLTP systems, since it is not useful to spend 50 ms deciding
which optimizations to enable for a 10 ms transaction. In this sec-
tion, we define our transaction Markov models and outline how they
are generated. We describe how to use these models to select opti-
mizations, as well as how to maintain them, in subsequent sections.

3.1 Definition

Stored procedures are composed of a set of queries that have
unique names. A given invocation of a stored procedure executes
a subset of these queries in some order, possibly repeating queries
any number of times due to loops. For a stored procedure SP;,
we define the transaction Markov model M, as an acyclic directed
graph of the execution states and paths of SPy. An execution state
is defined as a vertex v; € V(M) that represents a unique invo-
cation of a single query within SPy, where v; is identified by (1)
the name of the query, (2) the number of times that the query has
been executed previously in the transaction (counter), (3) the set
of partitions that this query will access (partitions) as returned
by the DBMS’s internal API [5], and (4) the set of partitions that the
transaction has already accessed (previous). In essence, a vertex
encodes all of the relevant execution history for a transaction up to
that point. Each model also contains three vertices that represent the
begin, commit, and abort states of a transaction. Two vertices
v;, v; are adjacent in M, through the directed edge e; ; € E(M,)
if a transaction executes v;’s query immediately after v;’s query.

The outgoing edges from a vertex v; € V(M,) represent the
probability distribution that a transaction transitions from v;’s state
to one of its subsequent states. If a transaction committed, then the
vertex for the last query it executed is connected by an edge to the
commit state; in the same way, if the transaction aborted, then the
last query’s vertex is connected to the abort state. A transaction’s
execution path in M is an ordered list of vertices from the begin
state to one of these two terminal states.

These Markov models are used to predict the future states of new
transactions based on the history of previous transactions. Each
model is generated from a sample workload trace for an applica-
tion. A trace contains for each transaction (1) its procedure input
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Figure 4: An example of a Markov model for the NewOrder stored procedure shown in Fig. 2.

parameters and (2) the queries it executed, with their corresponding
parameters. Because the trace does not encode what partitions each
query accessed, new models must be regenerated from the trace
whenever the database’s partitioning scheme changes.

Fig. 4 shows an example of a Markov model for the NewOrder
procedure in Fig. 2. In the detailed view shown in Fig. 4b, we see
that there are two GetWarehouse vertices that are adjacent to the
begin vertex. The sets of previously accessed partitions for these
vertices are empty since they are the first query in the transaction,
while the subsequent CheckStock states include partitions that
were touched by their parent vertices. For simplicity, Fig. 4 was
generated for a database that has only two partitions, and thus ev-
ery NewOrder transaction executes the GetWarehouse query
on just one of the two partitions (assuming that each warehouse is
assigned to one partition).

Every vertex is also annotated with a table of probabilities for
events that may occur after the transaction reaches that particular
state. This is used to make initial predictions about a transaction,
and to refine and validate those predictions as it executes. The ta-
ble’s values are derived from the probability distributions of the
state transitions inherent in a Markov model, but are pre-computed
in order to avoid having to perform an expensive traversal of the
model for each transaction. This step is optional but reduces the
on-line computing time for each transaction by an average of 24%,
which is important for short-lived transactions. As shown in Fig. 5,
a probability table contains two types of estimates. The first type
are global predictions on (1) the probability that the transaction’s
future queries will execute on the same partition as where its con-
trol code is executing (OP1) and (2) the probability that the trans-
action will abort (OP3). For each partition in the cluster, the table
also includes the probability that a transaction will execute a query
that either reads or writes data at that partition (OP2), or conversely
whether a transaction is finished at that partition (OP4).

3.2 Model Generation

A stored procedure’s Markov model is generated in two parts.
In the first part, called the construction phase, we create all known
execution states from the workload trace. Next, in the processing
phase, we traverse the model and calculate its probability distribu-
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Figure 5: The probability table for the Get Warehouse state from
Fig. 4. The table shows that with 100% certainty any transaction
that reaches this state will execute another query that accesses par-
tition #0 before it commits. Conversely, there is a 5% chance that it
will need to either read or write data on partition #1.

tions. We discuss adding new states at run time in Section 4.4.

Construction Phase: A new model for a transaction initially
contains no edges and the three vertices for the begin, commit,
and abort states. For each transaction record in the workload
trace, we estimate the partitions accessed by its queries using the
DBMS’s internal API for the target cluster configuration [5]. We
then traverse the corresponding path in the model, adding vertices
and edges where appropriate. After all queries in the transaction
have been processed, the last vertex in the transaction’s path is con-
nected to one of the terminal states. At the end of this phase, all of
the initial execution states and edges have been created.

Processing Phase: In terms of the model, an edge’s probabil-
ity represents the likelihood that a transaction at the parent vertex
will transition along the edge to the child vertex. In terms of the
transaction, this is the probability that a transaction that has reached
the parent state will execute the child’s query next. The processing
phase visits each vertex in the model, assigning probabilities to each
outgoing edge. The probability is computed as the number of times
an edge was visited divided by the total number of times the vertex
was reached in the construction phase.

After the edge probabilities are calculated, we then pre-compute
the vertex probability tables. A vertex’s probability table is based
on its children’s tables weighted by their edge probabilities. The
first step is, therefore, to initialize the default probabilities in the ter-
minal states: all of the partition-specific probabilities at the commit
vertex and the global abort probability at the abort vertex are both
set to one. Then to calculate the tables for the remaining vertices,
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Figure 6: An overview of the Houdini predictive framework: (1) at
initialization time, Houdini generates the Markov models and pa-
rameter mappings using a workload trace; (2) at run time, the client
sends transaction requests to the DBMS’s transaction coordinator;
(3) the DBMS passes this request to Houdini, which generates an
initial path estimate and selects optimizations; (4) Houdini monitors
the transaction as it executes and provides updates to the DBMS.

we traverse the model in ascending order based on the length of
the longest path from each vertex to either the commit or abort
vertex. Traversing the graph in this manner ensures that a vertex’s
table is only calculated after the tables for all of its children have
been calculated. If the query at a vertex reads or writes data at a par-
ticular partition, then the corresponding entry in that vertex’s prob-
ability table for that partition is set to one and the finish probability
is set to zero. For those partitions not accessed at a state, then the
read/write/finish probabilities are the sum of their children vertices’
table entries at that partition weighted on the edge probabilities to
each of those child vertices.

4. PREDICTIVE FRAMEWORK

Given this definition of our Markov models, we now present
Houdini, a framework for “magically” predicting the actions of
transactions at run time. Such a framework can be embedded in
a DBMS to enable it to automatically optimize its workload. Hou-
dini’s functionalities are designed to be autonomous, and thus do
not require human intervention to maintain once it is deployed.

As shown in Fig. 6, Houdini is deployed on each node in the
cluster and is provided with all of the Markov models generated
off-line for the application’s stored procedures. When a transaction
request arrives at a node, the DBMS passes the request (i.e., proce-
dure name and input parameters) to Houdini, which then generates
an initial estimate of the transaction’s execution path. This path
represents the execution states that the transaction will likely reach
in the Markov model for that procedure. From this initial path,
Houdini informs the DBMS which of the optimizations described
in Section 2 to enable for that request.

Determining the initial properties of a transaction before it ex-
ecutes is the critical component of our work. We first describe a
technique for mapping the procedure input parameters to query pa-
rameters so that we can predict what partitions queries will access.
We then describe how to construct the initial path in our Markov
models using these parameter mappings and how Houdini uses it to
select which optimizations to enable. Lastly, we discuss how Hou-
dini checks whether the initial path matches what the transaction
does and makes adjustments in the DBMS.

4.1 Parameter Mappings

We first observe that for most transactions in OLTP workloads,
the set of partitions that each query will access is dependent on its
input parameters and the database’s current state [23]. A corollary
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Figure 7: A parameter mapping for the NewOrder procedure.

to this is that the query parameters that are used in predicates on
tables’ partitioning attributes are often provided as procedure input
parameters, and therefore they are not dependent on the output of
earlier queries in the transaction. For example, the first input pa-
rameter to Fig. 2 is the warehouse id (w_1id) that is used as an input
parameter for almost all of the queries in NewOrder. Given this,
for those queries whose input parameters that are “linked” to proce-
dure parameters, we can determine what partitions the queries will
access using the values of the procedure parameters at run time.
Although procedures that do not follow this rule do exist, in our
experience they are the exception in OLTP applications or are the
byproduct of poor application design.

To capture such relationships, we use a data structure called a
parameter mapping that is derived from the sample workload trace.
A procedure’s parameter mapping identifies (1) the procedure in-
put parameters that are also used as query input parameters and (2)
the input parameters for one query that are also used as the input
parameters for other queries. We use a dynamic analysis technique
to derive mappings from a sample workload trace. One could also
use static analysis techniques, such as symbolic evaluation or taint
checking, but these approaches would still need to be combined
with traces using dataflow analysis since a transaction’s execution
path could be dependent on the state of the database.

To create a new mapping for a procedure, we examine each trans-
action record for that procedure in the workload and compare its
procedure input parameters with all of the input parameters for each
query executed in that transaction. For each unique pairwise com-
bination of procedure parameters and query parameters, we count
the number of times that the two parameters had the same value in
a transaction. After processing all of the records in this manner, we
then calculate the mapping coefficient for all parameter pairs as the
number of times that the values for that pair were the same divided
by the number of comparisons performed. As shown in the exam-
ple in Fig. 7, the first procedure parameter has the same value as
the first query parameter for GetWarehouse (i.e., the mapping
coefficient is equal to one), and thus we infer that they are the same
variable in the procedure’s control code. We apply this same tech-
nique to the other queries and map their input parameters as well.

A parameter mapping also supports transactions where the same
query is executed multiple times and when the stored procedure
has non-scalar input parameters. If a query is executed multiple
times in the same transaction, then each invocation is considered a
unique query. Likewise, if a procedure input parameter is an array,
then each element of that array is treated as a unique parameter.
From the mapping in Fig. 7, we identify that the n-th element of the
i_ids array is linked to the third parameter of the n-th invocation
of InsertOrdLine in Fig. 2. For each element in a procedure
parameter array, we compare it with all of the query parameters
within the current transaction just as before. The coefficients for
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Figure 8: An example of generating the initial execution path estimate for a NewOrder invocation. As shown in the trace record in Fig. 7,

the procedure parameters in this example are (w_id=0,

multiple query instances or array parameters are aggregated into a
single value using their geometric mean.

We remove false positives by discarding any mapping coeffi-
cients that are below a threshold; these occur when parameters ran-
domly have the same values or when the control code contains a
conditional block that modifies the input parameter. We found em-
pirically that coefficients greater than 0.9 seem to all give the same
result for the workloads that we investigated.

4.2 Initial Execution Path Estimation

Now with the procedure parameter mappings, Houdini constructs
the initial execution path estimate in the Markov models for each
new transaction request that arrives at the DBMS.

To generate a path estimate for a transaction, we first enumerate
all of the successor states to the begin state and construct the set of
candidate queries. We then estimate which partitions these candi-
dates queries will access using the procedure’s parameter mapping.
This determines whether transitioning from the current state to the
state represented by these queries (and the set of partitions that they
access) is valid. A state transition is valid for a transaction if (1) we
can determine all the query parameters needed for calculating the
partitions accessed by that state’s query and (2) the next state’s set
of previously accessed partitions contains all the partitions accessed
by the transaction up to this point. For those transitions that are
valid, we choose the one with the greatest edge probability, append
this state to the initial path estimate, and then repeat the process.

We now illustrate these steps using the NewOrder Markov model
shown in Fig. 4. As shown in Fig. 8a, the only candidate query
when a transaction starts is GetWarehouse. Using the parame-
ter mapping shown in Fig. 7, we identify that GetWarehouse’s
first parameter is mapped to the procedure’s first parameter (w_id).
Therefore, we can compute which partitions GetWarehouse ac-
cesses because we know with a high-degree of certainty the value
of its only input parameter is the same as the value of w_id. We
then select the next state as the particular GetWarehouse state
that accesses the same partitions as was estimated. This process is
repeated in the next step in Fig. 8b: the candidate query set con-
tains only CheckStock, so we again use the mapping to get the
values of the procedure parameters that are used for that query and
compute which partitions that the query accesses. We then select
the next state in the path as the one that represents the first invo-
cation of CheckStock that accesses these partitions and also has
the correct previously accessed partitions for the transaction.

The technique described above works well when either the pro-
cedure’s control code is linear or all the pertinent query parame-

iids=[1001,1002],
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w_i_ids=[0,1], iqgtys=[2,7]).

ter are mappable to procedure parameters, whereupon the Markov
model is essentially a state machine. But many procedures contain
conditional branches, and thus it is not always possible to resolve
which state is next simply by estimating partitions. An example
of this is shown in Fig. 8c. There are two choices for which query
that the transaction could execute next: (1) the second invocation of
CheckStock or (2) the first invocation of InsertOrder. Both
transitions are valid if the size of the i_ids procedure input pa-
rameter array is greater than one. If the size of this array was one,
then Houdini would infer that the transaction could never execute
CheckStock a second time. When such uncertainty arises, we
chose the edge with the greater weight.

The path estimate is complete once the transaction transitions to
either the commit or abort state.

4.3 Initial Optimizations Selection

Using a transaction’s initial path estimate, Houdini chooses which
optimizations the DBMS should enable when it executes the trans-
action. We now describe how Houdini selects these optimizations.

For each potential optimization, we calculate a confidence coef-
ficient that denotes how likely that it is correct. This coefficient
is based on the probabilities of the edges selected in the transac-
tion’s initial path estimate. Houdini prunes estimations if their cor-
responding confidence is less than a certain threshold. Setting this
threshold too high creates false negatives, preventing the DBMS
from enabling valid optimizations. Conversely, setting this thresh-
old too low creates false positives, causing the DBMS to enable
certain optimizations for transactions that turn out to be incorrect
and therefore it will have to rollback work. We explore the sensi-
tivity of this threshold in our evaluation in Section 6.5.

OP1. Houdini counts each time that a partition is accessed by a
query in the transaction’s initial path estimate. The partition that is
accessed the most is selected as the transaction’s base partition.

OP2. Similarly, the set of partitions that the transaction needs (and
therefore the DBMS should lock) is the based on the execution
states in the initial path estimate. The probability that a partition
is accessed is the confidence coefficient of the edges in the initial
path up to the first vertex that accesses that partition.

OP3. Because multi-partition and speculatively executed transac-
tions can be aborted as a result of other transactions in the system,
these transactions are always executed with undo logging enabled.
Thus, Houdini will only determine which non-speculative single-
partition transactions can be executed without undo buffers. Hou-
dini is more cautious when estimating whether transactions could



abort because unlike the other optimizations, it will be very expen-
sive to recover if it is wrong. To avoid this, we use the greatest abort
probability in the all of the tables in the initial path estimate. That
is, the probability that the transaction will abort is the largest abort
probability value in all of the states’ tables.

4.4 Optimization Updates

After creating the initial path and optimization estimates for a
transaction, Houdini provides this information to the DBMS. The
transaction is then queued for execution at the current node or redi-
rected based on the estimate. Once the transaction starts, Houdini
tracks its execution and constructs the path of execution states that
the transaction enters in its stored procedure’s model. At each state,
Houdini (1) determines whether the transaction has deviated from
the initial path estimate and (2) derives new information based on
the transaction’s current state. If the transaction reaches a state
that does not exist in the model, then a new vertex is added as a
placeholder; no further information can be derived about that state
until Houdini recomputes the model’s probabilities (Section 4.5).
Otherwise, Houdini uses the current state to provide updates to the
DBMS’s transaction coordinator:

OP3. Houdini uses the pre-calculated probability tables to check
whether a single-partition transaction has reached a point in its con-
trol code that will never abort (i.e., there is no path from the current
state to the abort state). When this occurs, the DBMS disables
undo logging for the remainder of the transaction’s execution.

OP4. Houdini also uses the probability tables to determine whether
a distributed transaction is finished with partitions. If the finish
probability for a particular partition is above the confidence thresh-
old, then Houdini informs the DBMS that the transaction no longer
needs that partition. This allows the DBMS to send the early pre-
pare message [21] and speculatively execute transactions at these
partitions [4, 18]. If the transaction was read-only at a partition,
then it commits immediately and the DBMS begins to execute other
transactions on that partition. Otherwise, the speculative transac-
tion waits until the distributed transaction finishes.

4.5 Model Maintenance

The probability that a transaction transitions from one state to
another is based on static properties of the sample workload trace
that was used to generate the models. If an application’s work-
load shifts, then the models may no longer represent the current
behavioral state of that application. For example, if previous New—
Order transactions in the trace only inserted two items but now in-
coming requests have three or more, then Houdini will incorrectly
choose initial paths that only executed the CheckStock query
twice. Houdini can identify when the workload has changed [15]
and to adjust to these changes without having to re-create the mod-
els. This occurs on-line without stopping the system; new models
only need to be generated off-line when the database’s partitioning
scheme changes or when the procedure’s control code is modified.

Houdini determines whether a model is no longer accurate by
measuring how often it chooses a state transition for transactions
that does not match the expected edge probability distribution. As
a transaction executes, Houdini constructs its actual execution path
in the model and increments internal counters whenever the trans-
action “visits” an edge. As long as the distribution of the transitions
from each vertex is within some threshold of the original probabili-
ties in the Markov model, then Houdini infers that the model is still
in sync with the application. If the distribution no longer matches
the model’s expectations, then Houdini recalculates the edge and
vertex probabilities based on the edge counters. Since this is an
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inexpensive operation (< 5 ms), our current implementation uses
a threshold of 75% accuracy before Houdini recomputes the prob-
abilities. We defer the exploration of more robust techniques as
future work, such as a sliding window that only includes recent
transactions for fast changing workloads.

4.6 Limitations

There are three ways that Houdini may fail to improve the throu-
ghput of the DBMS. The first case is if the overhead from calculat-
ing the initial path estimate negates the optimizations’ performance
gains. This can occur if a model is very wide (i.e., many transi-
tion possibilities per state) or very long (i.e., many queries executed
per transaction). For the latter, the limit is approximately 175-200
queries per transaction in our current implementation. It simply
takes too long for Houdini to traverse the model for these transac-
tions and compute the partitions that could be accessed at each state.
Pre-computing initial path estimates for stored procedures that are
always single-partition would alleviate this problem to some extent,
but it is not applicable for procedures that are distributed only some
of the time since Houdini needs the path estimate to determine what
partitions will be accessed. We note, however, that procedures that
execute many queries and touch a large portion of the database are
not the main focus of high-performance OLTP systems.

Additionally, storing all of the execution states for a stored pro-
cedure in a single “global” Markov model can be difficult to scale
for large clusters. The total number of states per model is combina-
torial for procedures like NewOrder that access combinations of
partitions, most of which are unreachable based on where the trans-
action’s control code is executing. For example, a transaction exe-
cuting at a particular partition can only reach just one of the Get -
Warehouse states in Fig. 4b and based on which one that is, other
states can never be reached. These global models are also prob-
lematic on multi-core nodes, since Houdini must either use sepa-
rate copies of the models for each execution thread, or use locks to
avoid consistency issues when it updates the models.

The last type of limitation that can hinder DBMS performance
is if the models are unable to accurately predict what a transaction
will do, causing the DBMS to make wrong decisions and possibly
have to redo work. As an example of this, consider a NewOrder
request that has two items to insert from different warehouses (i.e.,
partitions). If Houdini uses the Markov model in Fig. 4 to predict
this transaction’s initial path, then it would not select the correct
execution state from the choices shown in Fig. 8c. This is because
the second invocation of CheckStock and the InsertOrder
query are both valid states; the length of the length of the warehouse
id array (i_w_ids) is greater than one, and thus the transaction
could potentially execute either query. As described in Section 4.2,
when such uncertainty arises, we choose the next state transition
based on edge with the greatest probability. This is still insufficient,
however, since the probability of the transition that the transaction
will actually take is less than the other potential transition. The
Markov model in Fig. 4 does not capture the fact that the number of
CheckStock queries corresponds to the length of the i_w_ids
array. This is problematic in our example because the query that
Houdini failed to predict in the model accesses a partition that is
different than the ones from the transaction’s previous queries.

S. MODEL PARTITIONING

Given these limitations, we now describe how Houdini automat-
ically partitions the Markov models for a given application to im-
prove their prediction efficacy and scalability. Houdini clusters the
transactions for each procedure in the sample workload trace based
on salient attributes of its input parameters. This allows us to cap-



Figure 9: A partitioned set of NewOrder Markov models. The de-
cision tree above the models divides transactions by the hash value
of the first procedure parameter and the length of the array of the
second procedure parameter. The detail of the models in the above
figure is not relevant other than to note that they are less complex
than the global model for the same procedure shown in Fig. 4.

Feature Category Description

NORMALIZEDVALUE(x) The normalized value of the parameter x.
HASHVALUE(x) The hash value of the parameter x.
ISNULL(x) Whether the value of the parameter x is null.
ARRAYLENGTH(z) The length of the array parameter x.
ARRAYALLSAMEHASH(z) Whether all elements of the array parameter

x hash to the value.
Table 1: The list of feature categories that are extracted from the
stored procedure input parameters for each transaction trace record.
These features are used when sub-dividing the models for each
stored procedure to improve scalability and prediction accuracy.

Value
null

Feature Instance Value \ Feature Instance
HASHVALUE(w_id) 0 ARRAYLENGTH(w_1d)

HASHVALUE(i_ids) null ARRAYLENGTH(i_ids) 2
HASHVALUE(i_w_id) null ARRAYLENGTH(i_w_ids) 2
HASHVALUE(i_gtys) null ARRAYLENGTH(i_gtys) 2

Table 2: The feature vector extracted from the transaction example
in Fig. 8. The value for the ARRAYLENGTH(w_1d) feature is null
because the w_id procedure parameter in Fig. 2 is not an array.

ture certain nuances of the transactions, such as variability in the
size of input parameter arrays. As shown in Fig. 9, we generate
models for each of these clusters and support them with a decision
tree that allows Houdini to quickly select the right model to use for
each incoming transaction request at run time.

Dividing the models in the manner that we now describe is a
well-known and effective technique from the machine learning and
optimization communities [26, 19].

5.1 Clustering

The goal of the clustering process is to group transactions to-
gether based on their features in such a way that the Markov mod-
els for each cluster more accurately represent the transactions. We
define a feature in this context as an attribute that is derived from
a transaction’s stored procedure input parameters [12]. For exam-
ple, one feature could be the length of the array for one particular
parameter, while another could be whether all of the values in that
array are the same. Table 1 shows the different categories of fea-
tures that are extracted from transaction records. A feature vector
is a list of values for these features that are extracted from each
transaction trace record in the sample workload. Each transaction’s
feature vector contains one value per input parameter per category.

92

An example of a feature vector is shown in Table 2

After extracting the feature vectors for each of the transaction
records in the workload trace, we then employ a machine learning
toolkit to cluster the transactions of each procedure based on these
vectors [13]. We use the expected maximization clustering algo-
rithm, as it does not require one to specify the number of clusters
beforehand. The transaction records are each assigned to a cluster
by this algorithm and then we train a new Markov model that is
specific for each cluster using these records. For example, if we
clustered the NewOrder transactions based on the length of the
i_w_ids input parameter, then the number of CheckStock invo-
cations for all transactions in each cluster will be the same.

5.2 Feed-Forward Selection

The problem with the above clustering approach is that it is de-
coupled from Houdini’s ability to predict a transaction’s properties
accurately using the models; that is, the clustering algorithm may
choose clusters for a stored procedure based on features that do not
improve the accuracy of the models’ predictions compared to the
single non-clustered model. Therefore, we need to determine which
set of features are relevant for each procedure in order to cluster the
transactions properly. Enumerating the power set of features with
a brute-force search to evaluate the accuracy of all feature combi-
nations is not feasible, since the amount of time needed to find the
optimal feature set is exponential. This would simply take too long
for applications either with a large number of stored procedures or
with stored procedures that have many input parameters.

We instead use a greedy algorithm called feed-forward selec-
tion as a faster alternative [12, 19]. This algorithm first iterates
all unique feature combinations for small set sizes and then con-
structs larger sets using only those features that were in the smaller
sets that improve the predictions. In each round r, we create all sets
of features of size r and measure how well they predict the initial
execution paths of transactions. After each round, we sort the fea-
ture sets in ascending order and select the features in the top 10%
sets with the best accuracy. We repeat the process in the next round
using sets of size r + 1. The search stops when at the end of a round
the algorithm fails to find at least one feature set that produces clus-
tered models with better prediction accuracy than the best feature
set found in the previous rounds.

To begin, we first split the sample workload for the target stored
procedure into three disjoint segments, called the training work-
set (30%), the validation workset (30%), and the testing workset
(40%) [19]. Then we enumerate the power set of features for the
current round (e.g., if there n features, then the initial round will
have n one-element sets). For each feature set in the round, we
seed the clustering algorithm on that set using the training workset.
We then use the seeded clusterer to divide the transaction records
in the validation workset and generate the Markov models for each
cluster using the same method described in Section 3.2.

Now with a separate Markov model per cluster for a particular
feature set, we estimate the accuracy of the clustered models us-
ing the remaining records in the testing workset. For each of these
transaction records, we generate an initial path estimate using Hou-
dini just as if it was a new transaction request and then simulate the
transaction executing in the system by generating the “actual” ex-
ecution path of the transaction. We measure the accuracy of these
initial path estimates not only based on whether it has the same ex-
ecution states as the actual path, but also based on whether Houdini
correctly generates transaction updates.

The accuracy for each initial path estimate is based on the opti-
mizations defined in Section 2. The penalty for incorrectly predict-
ing that a single-partition transaction will not abort is infinite, since
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Figure 10: Markov models for select stored procedures from the
three OLTP benchmarks used in our evaluation.

it puts the database in an unrecoverable state. The total accuracy
measurement for each feature set is the sum of these penalties for
all transactions in the testing workset.

5.3 Run Time Decision Tree

After the search terminates, we use the feature set with the low-
est cost (i.e., most accurately models the transactions for the tar-
get stored procedure) to generate a decision tree for the models us-
ing the C4.5 classifier algorithm from the same machine learning
toolkit [13]. When a new transaction request arrives at the DBMS
at run time, Houdini extracts the feature vector for the transaction
and traverses this decision tree to select which Markov model to use
for that request. For example, the Markov models shown Fig. 9 for
the NewOrder stored procedure are clustered on the value of the
w_id parameter and the length of the i_w_ids array. The models
in the leaf nodes of the tree are specific to these features. This mit-
igates the scaling, concurrency, and accuracy problems from using
a single model per procedure.

6. EXPERIMENTAL EVALUATION

We have integrated our modeling algorithms and prediction frame-
work in the H-Store system and now present an evaluation of its
usefulness. We use three OLTP benchmarks that have differing lev-
els of complexity in their workloads. We assume that the databases
for each benchmark are partitioned in such way that it maximizes
the number of single-partition transactions [7]. For each bench-
mark, we generate sample workload traces of 100,000 transactions
collected over a simulated one hour period.

All of the experiments measuring throughput were conducted on
a cluster at the University of Wisconsin-Madison. Each node has a
single 2.4GHz Intel Core 2 Duo processor with 4GB RAM.

6.1 Benchmarks

TATP: The Telecom Application Transaction Processing bench-
mark is an OLTP testing application that simulates a caller location
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TATP TPC-C AuctionMark
oP1 QIObal 95.0% 94.8% 94.9%
Partitioned 94.9% 99.9% 94.7%
oP2 Global 98.9% 90.9% 90.7%
Partitioned 100% 99.0% 95.4%
OP3 Global 100% 100% 100%
Partitioned 100% 100% 100%
OP4 Global 99.5% 100% 100%
Partitioned 99.5% 95.8% 99.9%
Total QIOba] 94.9% 93.8% 85.6%
Partitioned 94.9% 95.0% 90.2%

Table 3: Measurements of the global and partitioned Markov mod-
els’ accuracy in predicting the execution properties of transactions.

system used by telecommunication providers [25]. TATP has seven
stored procedures, of which four are always single-partitioned. The
other three each first execute a broadcast query that finds a unique
value from a column that the tables are not partitioned on, and then
perform some operation at a single partition using that value.

TPC-C: This benchmark is the current industry standard for eval-
uating the performance of OLTP systems [24]. It consists of five
stored procedures that simulate a warehouse-centric order process-
ing application. The key aspect about this benchmark is that the two
most executed procedures vary in whether their transactions touch
multiple partitions or not.

AuctionMark: AuctionMark is an OLTP benchmark being de-
veloped by Brown University and a well-known Internet auction
company [1]. It consists of 10 stored procedures, two of which are
periodically executed to process recently ended auctions. Many of
the procedures involve an interaction between a buyer and a seller
whose data are likely stored at different partitions. Other trans-
actions contain conditional branches that execute different queries
based on the procedure’s input parameters.

6.2 Model Accuracy

We first calculated the off-line accuracy of the optimization esti-
mates generated by Houdini for a simulated cluster of 16 partitions.
The accuracy of an estimate is based on whether Houdini (1) iden-
tifies the optimizations at the correct moment in the transaction’s
execution (e.g., disabling undo logging at the right time — OP3),
(2) does not cause the DBMS to perform unnecessary work (e.g.,
locking partitions that are never used — OP1, OP2), and (3) does
not cause the transaction to be aborted and restarted (e.g., access-
ing a partition after it was deemed finished — OP4). For each proce-
dure, we generate a single “global” model and a set of “partitioned”
models using the first 50,000 transaction records from the sample
workloads. We then use Houdini to estimate optimizations for the
remaining 50,000 transactions. We reset the models after each esti-
mation so as to not learn about new execution states, which would
mask any deficiencies.

The results in Table 3 show that the global Markov models en-
able accurate path estimates for 91.0% of the transactions evaluated,
while the partitioned models improved the accuracy rate to 93.4%.
Although Houdini fails to select the base partition (OP1) for 5% of
TATP’s transactions, they are all distributed transactions that either
update every partition (i.e., the base partition does not matter) or ac-
cess a single partition based on the result of a multi-partition query
(i.e., the best base partition depends on the state of the database).
The accuracy for TPC-C is nearly perfect in the partitioned models
for OP1-3, but that it can miss that a transaction is with finished
a partition (OP4). The accuracy for AuctionMark transactions is
also high, except for the two procedures with conditional branches.
Houdini never mispredicts that a transaction will not abort for any
benchmark, but it does miss a small number of transactions (<1%)
where it could have disabled undo logging (OP3).
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Figure 11: Relative measurements of the time spent for each trans-
action (1) estimating optimizations, (2) executing, (3) planning, (4)

coordinating its execution, and (5) other setup operations.

6.3 Estimation Overhead

Next, we measured the overhead of using Houdini to estimate
the optimizations at run time. We implemented a profiler [14] that
records the amount of time H-Store spends for each transaction (1)
estimating the initial execution path and updates, (2) executing its
control code and queries, (3) planning its execution, (4) coordinat-
ing its execution, and (5) miscellaneous setup operations. We exe-
cuted the benchmarks on a 16-partition H-Store cluster and report
the average time for each of these measurements. Profiling begins
when a request arrives at a node and then stops when the result is
sent back to the client. We use the partitioned models so that the
cost of traversing the decision tree is included in the measurements.

The results in Fig. 11 show that only an average of 5.8% of the
transactions’ total execution time is spent in Houdini. This time is
shared equally between estimating the initial path versus calculat-
ing updates. All procedures with an overhead greater than 15% are
short-lived single-partitioned transactions. For example, 46.5% of
AuctionMark NewComment’s execution time is spent selecting op-
timizations, but it is the shortest transaction (i.e., average execution
time is just 0.29 ms). Although we do not discuss such techniques
in this paper, Houdini can completely avoid this if it caches the esti-
mations for any non-abortable, always single-partition transactions.

6.4 Transaction Throughput

We next measured the throughput of H-Store when deployed with
Houdini. We execute each benchmark using five different cluster
sizes, with two partitions assigned per node. Transaction requests
are submitted from multiple client processes running on separate
machines in the cluster. We use four client threads per partition
to ensure that the workload queues at each node are always full.
We execute each benchmark three times per cluster size and report
the average throughput of these trials. In each trial, the DBMS
is allowed to “warm-up” for 60 seconds and then the throughput
is measured after five minutes. As H-Store executes, we record
the percentage of transactions for each procedure where Houdini
successfully selected an optimization. Note that this is different
than the accuracy measurements shown Table 3, because Houdini
now must consider the run time state of the DBMS (e.g., it cannot
disable undo logging for speculative transactions).

We executed the benchmarks with Houdini first using the global
Markov models and then again using the partitioned models. We
allow Houdini to “learn” about new execution states in the models
in the warm-up period, and then recompute the probabilities before
running the measured workload. For each new transaction request,
Houdini generates the initial path estimate and determines whether
the request needs to be redirected to a different node (OP1) and can
be executed with undo logging (OP3). As the transaction executes,
Houdini checks whether it is finished with other partitions (OP4) or
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Procedure OP1 oP2 OP3 OP4 | Estimate
A DeleteCallFwrd - 100% - - 0.02 ms
B GetAccessData 98.5% 100% 64.8% 33.7% | 0.01 ms
& C GetNewDest 100% 100% 66.4% 33.6% | 0.01 ms
: D GetSubscriber 98.9% 100% 64.9% 34.1% | 0.01 ms
& E InsertcallFurd - 100% - - | 004ms
F UpdateLocation - 100% - - 0.01 ms
G UpdateSubscriber 100% 100% - 53.2% | 0.02 ms
H Delivery 100% 100% 78.6% 22.4% | 4.23 ms
Q | NewOrder 99.5% 93.2% 72.5% 19.6% | 0.43 ms
$ J orderstatus 100%  100%  89.6%  853% | 0.05ms
= K payment 99.1% 99.7% 60.6% 16.4% | 0.08 ms
L stockLevel 99.2% 100% 46.7% 22.0% | 0.05 ms

M CheckWinningBids - - - - -
N GetItem 100% 100% 89.0% 11.0% | 0.04 ms
% O GetUserInfo 99.9% 100%  75.3% 84% | 0.05ms
S P GetWatchedItems 100% 100% - - 0.04 ms
% Q NewBid 100% 100% 83.2% 13.3% | 0.26 ms
'% R NewComment 99.5% 100% 44.6% 11.3% | 0.13 ms
3: S NewItem 100% 100% 95.9% 4.1% 0.20 ms
T NewPurchase 99.0% 100% 46.4% 11.1% | 0.12ms
U PostAuction - 55.0% - 16.7% | 0.32 ms
V UpdateTtem 100% 100% 90.5% 9.5% 0.04 ms

Table 4: The percentage of transactions that Houdini successfully
enabled one of the four optimizations. In the case of OP4, the mea-
surement represents how many transactions were speculatively ex-
ecuted as a result of the early prepare optimization. The rightmost
column contains the average amount of time that Houdini spent cal-
culating the initial optimization estimates and updates at run time.

no longer needs undo logging (OP3). Any transaction that attempts
to access a partition that Houdini failed to predict (OP2) is aborted
and restarted as a multi-partition transaction that locks all partitions.

To compare how H-Store performs without Houdini, we also ex-
ecuted the benchmarks using DB2-style transaction redirects [6].
When operating in this mode, the DBMS first executes every re-
quest as single-partition transaction at a random partition on the
node where the request originally arrived. If a transaction attempts
to access a partition that is different than the one it was assigned to,
then it is aborted and redirected to the correct node. If the trans-
action attempts to access multiple partitions, none of which are at
the node where it is currently executing at, then it is redirected to
the partition that it requested the most and is executed as a multi-
partition transaction (with random tiebreakers). Because the DBMS
has no way to infer the transaction properties without Houdini, it
cannot use the other optimizations.

TATP: The results in Fig. 12a show that there is a 26% through-
put improvement when using the partitioned models with Houdini.
This is mainly attributable to Houdini identifying the best base par-
tition for 82% of TATP’s workload that is singled-partitioned (OP1,
OP2). The other 18% first execute a broadcast query on all parti-
tions, thus locking a subset of the partitions is not possible (OP2).
Subsequent queries in these transactions only access a single parti-
tion based on the result of the first query. This also makes it impos-
sible to select the correct base partition for each transaction (OP1),
since the Houdini cannot know which partition will be needed after
the broadcast query. Thus, without the early prepare optimization,
all of the other partitions would remain idle (OP4), albeit for just a
short amount of time. An example of a Markov model for this ac-
cess pattern is shown in Fig. 10a. Additionally, as shown in Table 4,
Houdini disables undo logging for 57.3% of TATP’s transactions
(OP3), but this has negligible impact since the transactions execute
only 1-3 queries or are read-only.

The throughput of global models is 4.5% slower on average than
the partitioned models due to lock contention in Houdini.

TPC-C: This benchmark’s results in Fig. 12b show that the “as-
sume single-partition” method performs 6% better than Houdini for
small clusters. This is because the likelihood that a transaction is
already at the best base partition is greater when there are fewer
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Figure 12: Throughput measurements of H-Store for different ex-
ecution modes: (1) Houdini with partitioned Markov models; (2)
Houdini with global Markov models; and (3) DB2-style transaction
redirects and assuming that all partitions are single-partitioned.
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partitions (OP1). TPC-C’s procedures also execute more queries
per transaction than the other benchmarks, and thus the estimations
take longer to compute. As shown in Table 4, Houdini takes an aver-
age of 4 ms to compute estimates for Del ivery transactions, but
these transactions take over 40 ms to execute. The benefit of our
techniques therefore is only evident for larger clusters: Houdini’s
ability to identify not only whether a transaction is distributed or
not, but also which partitions it accesses improves throughput by
33.6% (OP2). Table 4 also shows that 65.3% of TPC-C’s work-
load is executed without undo logging, most of which are after the
transactions have started (OP3).

These results also highlight the advantage of model partitioning:
the global models’ size grows exponentially relative to the number
of partitions, thereby increasing the time Houdini needs to traverse
the model. The partitioned models also allow Houdini to iden-
tify the correct partitions needed for NewOrder and Payment
transactions more often, resulting in fewer aborted transactions. As
shown in Fig. 10b, partitioning Payment’s models creates almost
linear models, which enables Houdini to easily identify when the
transaction is distributed (OP2).

AuctionMark: The results in Fig. 12¢ show that H-Store achieves
an average 47.3% performance improvement when using Houdini
with partitioned models for this workload. Like TPC-C, the global
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Figure 13: Throughput measurements of H-Store under varying

estimation confidence coefficient thresholds (Section 4.2).

models have scalability issues as the size of the cluster increases.
AuctionMark mostly benefits from identifying the two partitions
the lock for distributed transactions: one for the buyer and one
for the seller (OP2). As shown in Table 4, Houdini identifies this
optimization for 100% of the transactions. The “assume single-
partition” strategy does not scale because the transactions do not
access the remote partition in the first set of queries (OP1), thus
they must always be restarted again and lock all of the partitions.
Other procedures, such as GetUserInfo shown in Fig. 10c, con-
tain conditional branches with separate single-partition and multi-
partition paths. Such procedures are ideal for our model partition-
ing technique, but most of AuctionMark’s transactions are short-
lived, which means that disabling undo logging (OP3) and early
prepare optimizations (OP4) only provide a modest benefit.

As explained in Section 4.6, we disabled Houdini for the main-
tenance CheckWinningBids requests, as it takes too long pro-
cess due to the large number of queries (>175) in each transaction.
Houdini also does not correctly predict the accessed partitions for
45.0% of PostAuction transactions (OP2) because their input
parameters are large, arbitrary length arrays, which does not work
well with our model partitioning technique.

6.5 Confidence Sensitivity Analysis

Lastly, we measured how H-Store performs when Houdini uses
different confidence coefficient thresholds to select which optimiza-
tions to enable. Recall from Section 4.3 that this threshold deter-
mines whether a prediction will be included for a transaction based
on its confidence coefficient. We executed the benchmarks again in
H-Store on a 16-partition cluster and vary the confidence threshold
from zero (i.e., all estimations are permitted) to one (i.e., only the
most certain estimations are permitted).

As expected, when the threshold is set to zero, the results in
Fig. 13 show that all transactions are executed as multi-partition
since Houdini predicts that each transaction will always touch all
partitions. Once the threshold is >0.06 (i.e., %), the throughput
for TATP remains the same because Houdini correctly identifies
which partitions transactions will access (OP1, OP2) and when
they are finished with them (OP4). For TPC-C, the throughput
reaches a plateau at >0.3 because the number of mis-predicted
OP1 for NewOrder transactions is reduced from 10% to 5%, but
declines slightly as the threshold approaches one because Houdini
no longer selects to disable undo logging as much as it could. In the
case of AuctionMark, there are two procedures with conditional
branches where Houdini does predict the correct partitions (OP1,
OP2) until the threshold is >0.33 and >0.66.

7. RELATED WORK

Modeling workloads using machine learning techniques is a well-
known approach for extracting information about a database sys-
tem [28]. To our knowledge, however, our work is the first to gener-



ate intra-transaction execution models (i.e., modeling what queries
a transaction executes rather than simply what transactions were ex-
ecuted) and use them to optimize the execution of individual trans-
actions in a parallel database environment. Previous approaches
either model workloads based on individual queries or sets of trans-
actions in order to (1) manage resource allocation or (2) estimate
future actions of other transactions.

In the former category, the Markov models described in [15,
16] are used to dynamically determine when the workload prop-
erties of an application have changed and the database’s physical
design needs to be updated. The techniques proposed in [10] iden-
tify whether a sample database workload is either for an OLTP- or
OLAP-style application, and then tunes the system’s configuration
accordingly. The authors in [11] use decision trees to schedule and
allocate resources for long running OLAP queries.

The authors in [22] generate Markov models that estimate the
next query that an application will execute based on what query
it is currently executing and then pre-fetches that query if there
are enough resources available. Similarly, the authors in [9] use
Markov models to estimate the next transaction a user will execute
based on what transaction the DBMS is executing now. The work
described in [27] does use Markov models based on queries much
like ours, but their models are designed to identify user sessions
across transactional boundaries and to extract additional usage pat-
terns for off-line analysis purposes.

8. FUTURE WORK

Representing transactions with Markov models is also applica-
ble to several other research problems in parallel OLTP systems.
We plan on extending our models to include additional informa-
tion about transactions, such as their resource usage and execution
times. This information could then be used for admission control
or the intelligent scheduling of transactions based on the results of
the initial path estimates [11]. For example, the execution states in
a model could also include the expected remaining run time for a
transaction. By examining the relationships between queries and
the procedure parameters, we can discover commutative sets of
queries that could then be pre-fetched if the transaction enters some
“trigger” state [22]. Similarly, the models could also identify sets
of redundant queries in a transaction that could automatically be
rewritten and grouped into a smaller batch.

We are currently investigating techniques for the automatic reor-
ganization of on-line H-Store deployments in order to respond to
changes in demand and workload skew. We plan on leveraging our
models’ ability to quickly compare the expected execution paths
of transactions with the actual execution properties of the current
workload. Such automatic changes include scaling up the number
of partitions in the system or repartitioning the database.
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10. CONCLUSION

We introduced a new approach for representing the stored pro-
cedures of OLTP applications using Markov models to forecast the
behavior of transactions. Such models are used to identify when the
DBMS can execute a transaction using four different optimizations.
From this, we then presented Houdini, a new prediction framework
that uses our Markov models to estimate the execution path of fu-
ture transactions. We described a method for generating these mod-
els, as well as how to partition them on certain features to improve
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their scalability and accuracy. To evaluate our work, we integrated
Houdini into the H-Store parallel OLTP system. The results from
our experimental analysis show that our models accurately predict
the execution paths of 93% of transactions in three OLTP bench-
marks. We also demonstrated that our technique has only an aver-
age overhead of 5.8%, while increasing the throughput of the sys-
tem by an average of 41% compared to a naive approach. These
results suggest that predicting transaction properties using Markov
models could be useful for any distributed OLTP database. In future
work, we will attempt to apply it to real applications and systems.
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