知识点
图像插值:
是基于模型框架下,从低分辨率图像生成高分辨率图像的过程,用以恢复图像中所丢失信息。
图像插值的分类
插值,分为图像内插值和图像间插值。其主要应用是对图像进行放大以及旋转等操作。
-
图像内插值:根据一幅较低分辨率图像再生出另一幅均具有较高分辨率的图像。
图像内插值实际上是对单帧图像的图像重建过程,这就意味着生成原始图像中没有的数据。
-
图像间插值:也叫图像的超分辨率重建,是指在一图像序列之间再生出若干幅新的图像,可应用于医学图像序列切片和视频序列之间的插值。
线性插值:这类插值方法在图像插值过程中采用同一种插值内核,不用考虑待插像素点所处的位置,这种做法会使图像中的边缘变得模糊不清,达不到高清图像的视觉效果。
非线性插值:
图像插值方法有:
-
最近邻插值(Nearest-neighbor)和双线性插值(Bilinear)
算法很容易出现锯齿,生成的图片质量不好。因此只在对图像质量要求不高的场合下采用。 -
双平方插值(bicubic)和双立方插值(bicubic)
实质上是”低通滤波器”,在增强图像平滑效果的同时丢失了许多高频信息。而在很多应用场合,细节信息恰恰非常重要,要考虑如何在保证平滑效果的同时尽可能地保留细节信息。
图像插值算法
最近邻插值
这是最简单的一种插值方法,不需要计算,在待求像素的四邻像素中,将距离待求像素最近的零像素灰度赋给待求像素。设待求像素坐标(i+u,j+v),其中i,j都为正整数,u,v为大于零小于1的小数,则待求像素灰度值f(i+u,j+v)。如下图:

最邻近算法计算量较小,但可能会造成插值生成的图像灰度上的不连续,在灰度变化的地方可能出现明显的锯齿状。
是指将目标图像中的点,对应到源图像中后,找到最相邻的整数点,作为插值后的输出。如下图所示,P为目标图像对应到源图像中的点,Q11、Q12、Q21、Q22是P点周围4个整数点,Q12与P离的最近,因此P点的值等于Q12的值。
由于图像中像素具有邻域相关性,因此,用这种拷贝的方法会产生明显的锯齿。
双线性内插值
双线性内插值是利用待求像素四个邻像素的灰度在两个方向上做线性内插,如下图所示:
对于(i,j+v),f(i,j)到f(i,j+1)的灰度变化为线性关系,则有: