文章目录
摘要
目标检测作为计算机视觉中最基本、最具挑战性的问题之一,近年来受到了广泛的关注。它在过去二十年的发展可以看作是计算机视觉历史的一个缩影。如果我们将今天的目标检测视为深度学习下的一种技术美学,那么回过头来看20年,我们将见证冷武器时代的智慧。本文根据目标检测技术的发展,对跨越四分之一世纪(20世纪90年代至2019年)的400篇目标检测论文进行了广泛的回顾。本文涵盖了许多主题,包括
- 历史上的里程碑检测器、检测数据集、度量、
- 检测系统的基本构建块、加速技术以及最新的检测方法。
本文还回顾了一些重要的检测应用,如行人检测、人脸检测、文本检测等,并深入分析了它们面临的挑战以及近年来的技术改进。
一篇整理的很好的中文版:
论文笔记-2019-Object Detection in 20 Years: A Survey
1. INTRODUCTION
目标检测是数字图像中某一类 ( 如人、动物或汽车 ) 的重要计算机视觉任务。目标检测的目标是开发计算模型和技术,提供计算机视觉应用程序所需的最基本的信息之一:什么是目标?在哪里?
目标检测作为计算机视觉的基本问题之一,是许多其他计算机视觉任务的基础,如实例分割、图像字幕、目标跟踪等。从应用程序的角度来看,目标检测可以被分为两个研究主题:“ Gener