【Unity】 HTFramework框架(二十九)OCR文字识别

本文介绍如何使用百度AI开放平台的OCR文字识别接口进行文字识别,包括设置TOKEN、调用不同精度的识别方法及识别结果处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更新日期:2025年3月21日。
Github 仓库:https://github.com/SaiTingHu/HTFrameworkAI
Gitee 仓库:https://gitee.com/SaiTingHu/HTFrameworkAI

一、OCR文字识别简介

对接百度AI开放平台,封装的文字识别接口。

二、使用OCR文字识别

设置TOKEN

文字识别需要鉴权认证的通行令牌TOKEN,登录百度AI开放平台控制台,通过新建应用获取应用的APIKEYSECRETKEY,在任意初始化位置设置这两个key:

        CharacterRecognitioner.SetAPIKEY("你的应用APIKEY");
        CharacterRecognitioner.SetSECRETKEY("你的应用SECRETKEY");

然后在调用文字识别接口前,必须先生成TOKEN(一个TOKEN的有效期是30天,失效后必须重新生成):

		CharacterRecognitioner.GenerateTOKEN();

由于上文的生成TOKEN的接口无法跨域,所以在WebGL平台无效,所以我们只能在外部生成TOKEN再赋值给CharacterRecognitioner:

        CharacterRecognitioner.SetTOKEN("外部生成的TOKEN");

调用不同的识别方法

文字识别根据精度和识别数据的不同,分为多个识别方法,目前支持如下的几个识别方法:

1.OCRGeneralBasicRecognition 通用文字识别方法: 多场景、多语种、高精度的整图文字检测和识别。

2.OCRGeneralRecognition 通用文字识别方法(含位置信息版): 多场景、多语种、高精度的整图文字检测和识别,并返回文字在图中的位置信息。

3.OCRAccurateBasicRecognition 通用文字识别方法(高精度版): 多场景、多语种、高精度的整图文字检测和识别(精度更高,但更耗时)。

4.OCRAccurateRecognition 通用文字识别方法(高精度含位置版): 多场景、多语种、高精度的整图文字检测和识别,并返回文字在图中的位置信息(精度更高,但更耗时)。

开始识别

设置了TOKEN之后便可以直接开始识别了,调用如下接口:

	private IEnumerator Start()
	{
        CharacterRecognitioner.SetAPIKEY("你的应用APIKEY");
        CharacterRecognitioner.SetSECRETKEY("你的应用SECRETKEY");

        //等待生成TOKEN完成
        yield return CharacterRecognitioner.GenerateTOKEN();

        //待识别的图片
        Texture2D texture = Resources.Load<Texture2D>("Test");
        //使用高精度识别方法
        OCRAccurateBasicRecognition recognition = new OCRAccurateBasicRecognition(texture);
        recognition.SuccessHandler = RecognitionSucceed;
        //识别文字
        yield return CharacterRecognitioner.Recognition(recognition);
    }

    //识别成功回调
    private void RecognitionSucceed(OCRResponse response)
	{
        GlobalTools.LogInfo("识别到文字数量:" + response.WordsCount);
        GlobalTools.LogInfo("识别到如下文字:");
        for (int i = 0; i < response.Words.Count; i++)
        {
            GlobalTools.LogInfo(response.Words[i].Content);
        }
    }

我们识别的测试图片如下:

在这里插入图片描述
识别结果:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神码编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值