第十六篇 Inception V2、Inception V3、Inception V4模型详解

本文详细介绍了Inception系列模型的改进与发展,从Inception V2的Batch Normalization和模块结构变化,到Inception V3的非对称分解,再到Inception V4的复杂网络结构,阐述了各版本如何通过结构调整减少参数并提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在前面的文章,我详解了GoogLeNet的网络结构,想必大家对GoogLeNet的Inception结构非常的了解了,GoogLeNet共有四个版本,我们在前面学习到的GoogLeNet也就是Inception V1。接下来,这篇文章将详解V2、V3、V4的网络结构。
在这里插入图片描述

Inception V2 网络结构

Inception V2改进之处有:

  • 把5✖5的卷积改成了两个3✖3的卷积串联,这样可以增加网络的深度,并且减少了很多参数。模型的结构如下图:

在这里插入图片描述

  • Inception_v2还引入了使用了Batch Normalization,加了这个以后训练起来收敛更快,学习起来自然更高效,可以减少dropout的使用。Batch Normalization成为以后CNN的标配。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值