微信公众号 - 实现 H5 网页在微信内置浏览器中下载文件,可预览和下载 office 文件(doc / xls / ppt / pdf 等)适用于任何前端技术栈网站,兼容安卓和苹果系统!

122 篇文章 ¥19.90 ¥99.00

前言

网上的教程都是让你写页面 “引导” 右上角三个点里,让用户自己去浏览器打开,其实这样用户体验并不好。

本文实现了 最新微信公众号 H5 网页(微信内置浏览器中),预览下载 office 文件,安卓和苹果全都支持!

支持 Vue2 / Vue3 语法,您可以直接复制代码,移植到自己项目中去,任何前端项目(比如 vue,uniapp,nuxt,react 等等)都保证可用。


如下图真机所示,分别在安卓和苹果系统中实现 “文件下载”,也是目前最主流的黑科技解决方案,

安卓系统下,当用户点击下载按钮后自动弹出 “微信原生” 去浏览器下载,而苹果系统则是预览,然后发送到电脑上。

在这里插入图片描述

示例代码

### 关于CIFAR-10数据集 #### 数据集介绍 CIFAR-10是一个用于识别自然场景中的物体的小型图像分类数据集。该数据集中包含了60,000张32×32彩色图片,分为10个类别,每类有6,000幅图,其中训练集包含50,000张图片,测试集则由剩下的10,000张组成[^4]。 #### 使用方法 为了方便开发者快速上手,在Python环境下可以借助`torchvision.datasets.CIFAR10()`函数来加载此数据集。下面给出一段简单的代码示例展示如何利用PyTorch框架读取并预处理这些图像: ```python from torchvision import datasets, transforms import torch.utils.data as data_utils transform = transforms.Compose([ transforms.ToTensor(), ]) train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) train_loader = data_utils.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True) test_loader = data_utils.DataLoader(dataset=test_dataset, batch_size=1000, shuffle=False) ``` 这段脚本首先定义了一个转换操作列表,它会将输入的PIL Image对象转化为tensor形式;接着分别创建了两个实例化后的`datasets.CIFAR10`对象——一个是用来做训练用途(`train=True`),另一个则是针对评估阶段准备的数据集合(`train=False`);最后通过DataLoader封装器实现了批量迭代访问机制。 #### 下载链接 对于希望直接获取文件压缩包而非依赖自动化工具完成下载过程的研究人员来说,可以通过以下途径获得原始资料: - 官方网站:[https://www.cs.toronto.edu/~kriz/cifar.html](https://www.cs.toronto.edu/~kriz/cifar.html)[^1] - 百度云盘分享(需提取码):可通过提供的项目地址找到具体说明页面以取得最新有效的连接方式[^3]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蔡来了

请作者喝杯咖啡 :)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值