Python遇见机器学习 ---- 逻辑回归 Logistic Regression

本文介绍了Python中逻辑回归的原理与应用,从Sigmoid函数到实现逻辑回归,探讨了决策边界、多项式特征的添加以及scikit-learn库中的逻辑回归实现。同时,文章还讨论了在多分类问题中OvR和OvO的区别和应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

综述 

“子非鱼,焉知鱼之乐”

本文采用编译器:jupyter 

逻辑回归方法是从线性回归方法发展过来的,通常解决的是分类问题,读者或许有这样一个疑问:既然是回归算法又么解决分类问题的呢?

道理其实很简单,在我们求出线性回归系数a,b之后,对于每一个输入的x值,模型都可以输出对应的y值,如果把输出值y限制在0到1的范围内,那么这个y就非常的像一个概率p,我们只用规定概率的不同取值范围对应不同的标记值,就可以把一个回归问题转化成分类问题。

这个转化过程就是介绍的重点,如图。

在回归问题中,输出的y取值范围为 负无穷到正无穷 

回归问题要求输出结果值域为[0, 1],故做如下变换:

定义Sigmoid函数:

 

01 Sigmoid函数

import numpy as np
import matplotlib.pyplot as plt

def sigmoid(t):
    return 1 / (1 + np.exp(-t))

x = np.linspace(-10, 10, 500)
y = sigmoid(x)
​
plt.plot(x, y)
plt.show()

由上面的分析可得:

于是逻辑回归问题就可以转化成:对于给定的样本数据集X,y,找到参数\theta使得可以最大程度获得样本数据集X对应的分类输出y

首先还是思考如何表示损失的函数:

没有公式解,只能用梯度下降法求解,过程如下(可跳过直接查看结果):

 

前半部分:

 后半部分:

 

02 实现逻辑回归

 

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
​
iris = datasets.load_iris()

X = iris.data
y = iris.target

# 逻辑回归解决的是二分类问题,所以只取两个类别
X = X[y<2, :2]
y = y[y<2]

X.shape
# Out[8]:
# (100, 2)

y.shape
# Out[9]:
# (100,)

plt.scatter(X[y==0,0],X[y==0,1],color='red')
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王曾是少年

如果对你有帮助,欢迎支持我

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值