截取屏幕指定位置大小并把数据处理成np.arr类型数据

本文记录了一次在使用DQN算法训练迷宫环境时遇到的截图RGB通道异常问题,原本预期的3通道变成了4通道,通过调整图片resize函数的参数解决了这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我这里使用的截图是莫烦DQN迷宫环境的图像如下:

123

截图是一个动态环境,但是这里出现了一个尴尬的问题先附上一下代码:

import time
import numpy as np
import pandas as pd
import tensorflow as tf
import numpy
from skimage import io, transform  # skimage模块下的io transform(图像的形变与缩放)模块
import glob  # glob 文件通配符模块
import os  # os 处理文件和目录的模块
import tensorflow as tf
import numpy as np  # 多维数据处理模块
import time
import pyscreenshot as ImageGrab

# 将所有的图片resize成100*100
w = 100
h = 100
c = 3
i = 0
while True:
    i = i+1
    im = ImageGrab.grab(bbox=(70, 50, 220, 210))
    im.save("/home/wly/图片/1.png")
    img = io.imread("/home/wly/图片/1.png")
    # skimage.transform.resize(image, output_shape)改变图片的尺寸
    img = transform.resize(img, (w, h))
    data = np.asarray(img, np.float32)
    observation = data
    print(np.shape(observation))

这里

img = transform.resize(img, (w, h))

我只指定了两个参数,因为我认为截图RGB应该为M×M×3的shape,如果其他图片进行分析后确实已经显示为100×100×3shape

但是唯独这个环境的图片显示100×100×4shape。

解决办法:

import time
import numpy as np
import pandas as pd
import tensorflow as tf
import numpy
from skimage import io, transform  # skimage模块下的io transform(图像的形变与缩放)模块
import glob  # glob 文件通配符模块
import os  # os 处理文件和目录的模块
import tensorflow as tf
import numpy as np  # 多维数据处理模块
import time
import pyscreenshot as ImageGrab

# 将所有的图片resize成100*100
w = 100
h = 100
c = 3
i = 0
while True:
    i = i+1
    im = ImageGrab.grab(bbox=(70, 50, 220, 210))
    im.save("/home/wly/图片/1.png")
    img = io.imread("/home/wly/图片/1.png")
    # skimage.transform.resize(image, output_shape)改变图片的尺寸
    img = transform.resize(img, (w, h ,c))
    data = np.asarray(img, np.float32)
    observation = data
    print(np.shape(observation))

指定了改变类型就没问题了。

原理还不明白,希望大家可以在评论中指点迷津。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

末世灯光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值