数据离散化

使用get_dummies将类别型数据转化为哑变量矩阵

加载数据,并将数据离散化

detail = pd.read_excel('./meal_order_detail.xlsx')

# print(detail.loc[:,'dishes_name'])

res = pd.get_dummies(detail.loc[:,'dishes_name'],prefix='菜品',prefix_sep=':')
print(res)

 

类别型数据转变为数值型数据

将连续性数据进行离散化,进行分组,将具体的数值转化为区间数据。bins表示分几组,include_lowest为True包含数据中的最小值。

amounts列的数据如下:

数据离散化之后的结果如下:

res_cut = pd.cut(detail.loc[:,'amounts'],bins=5,include_lowest=True)
print(res_cut)

ptp = detail.loc[:,'amounts'].max()-detail.loc[:,'amounts'].min()
step = np.ceil(ptp/5)
bins = np.arange(detail.loc[:,'amounts'].min(),detail.loc[:,'amounts'].max()+step,step)
res_cut = pd.cut(detail.loc[:,'amounts'],bins=bins,include_lowest=True)
print(res_cut)

利用分位数进行等频分组  [0,0.2,0.4,0.6,0.8,1.0]

bins = detail.loc[:,'amounts'].quantile(np.arange(0,1+1/5,1/5))
res_cut = pd.cut(detail.loc[:,'amounts'],bins=bins,include_lowest=True)
print(res_cut)

bins = [0,40,80,120,160,200]
res_cut = pd.cut(detail.loc[:,'amounts'],bins=bins,include_lowest=True)
print(res_cut)

将连续性数据转变成哑变量数据

bins = [0,40,80,120,160,200]
res_cut = pd.cut(detail.loc[:,'amounts'],bins=bins,include_lowest=True)

res_counts = pd.value_counts(res_cut)
res_dum = pd.get_dummies(res_cut,prefix='区间',prefix_sep=':')
print(res_dum)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值