游戏AI的创造思路-技术基础-深度学习(6)

让人工智障具备信念吧,依莫拉萨~~~串频道+暴露年龄。。。不过深度信念和信念真的没啥关系,不知道为啥这样起名

目录

3.6. 深度信念网络(DBN)

3.6.1. 定义

3.6.2. 发展历史

3.6.3. 算法公式

3.6.4. 运行原理

3.6.4.1. 基本原理

3.6.4.2. Python实现

3.6.4.2.1.简单实现

3.6.4.2.2. DBN训练过程

3.6.4.2.3. DBN的重构函数

3.6.4.3. C++实现方法讨论

3.6.5. 优缺点

3.6.6.游戏AI中使用该算法的场景、方法

3.6.6.1.概述

3.6.6.2. 智能控制游戏AI的算法示例


3.6. 深度信念网络(DBN)

3.6.1. 定义

深度信念网络是由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)堆叠而成的生成式图模型。

它包含多个层次,每一层都学习数据中的高级抽象特征。

在DBN中,最底层是可见层,负责接收输入数据;而顶层及其它所有隐藏层则是RBM。

3.6.2. 发展历史

深度信念网络由Geoffrey Hinton和他的研究小组在2006年首次提出。

这一模型的提出在深度学习领域具有里程碑意义,因为它通过无监督学习有效地训练多层神经网络,克服了传统神经网络训练的一些难题,推动了深度学习的发展。

3.6.3. 算法公式

在DBN中,每一层RBM的学习过程涉及到权重的调整。假设DBN由L层组成,第l层的RBM有权重矩阵(W^l)和偏置向量(b^l)。前向传播过程(从可见层到隐层)中,对于第l层,其隐层变量(z^l)的激活概率由以下公式给出:

[ p(z^l | x^{l-1}) = \sigma(W^l \cdot x^{l-1} + b^l) ]

其中,(\sigma)是sigmoid函数,用于将线性加权和转化为概率分布。反向传播过程(从隐层到可见层)类似,但方向相反。

3.6.4. 运行原理

3.6.4.1. 基本原理

DBN的运行原理基于两个主要阶段:无监督的预训练有监督的微调

无监督的预训练:在这个阶段,每个RBM层独立地进行无监督训练,学习数据的分布。这通过对比散度(Contrastive Divergence)算法实现,该算法能够近似最大化数据的似然函数。

有监督的微调:在预训练完成后,DBN可以使用有标签的数据进行微调,以提高在特定任务上的性能。这通常通过反向传播算法和梯度下降来实现。

3.6.4.2. Python实现
3.6.4.2.1.简单实现

在Python中,我们通常使用深度学习库如TensorFlow或PyTorch来实现DBN。以下是一个简化的DBN实现示例,使用TensorFlow和Keras:

import numpy as np  
import tensorflow as tf  
from tensorflow.keras.layers import Dense  
from tensorflow.keras.models import Sequential, Model  
from tensorflow.keras.layers import Input  
  
# 定义RBM模型  
class RBM(tf.keras.Model):  
    def __init__(self, num_visible, num_hidden):  
        super(RBM, self).__init__()  
        self.num_hidden = num_hidden  
        self.num_visible = num_visible  
        self.weights = tf.Variable(tf.random.normal([self.num_visible, self.num_hidden]))  
        self.bias_hidden = tf.Variable(tf.zeros([self.num_hidden]))  
        self.bias_visible = tf.Variable(tf.zeros([self.num_visible]))  
  
    # ... (此处省略RBM的前向传播、反向传播等方法的实现)  
  
# 定义DBN模型  
class DBN(Model):  
    def __init__(self, rbm_layers, output_size):  
        super(DBN, self).__init__()  
        self.rbm_layers = rbm_layers  
        self.output_layer = Dense(output_size, activation='softmax')  
  
    def call(self, inputs):  
        x = inputs  
        for rbm in self.rbm_layers:  
            x = rbm(x)  # 这里假设RBM类实现了__call__方法来进行前向传播  
        x = self.output_layer(x)  
        return x  
  
# 示例:构建一个具有两个RBM层的DBN模型  
rbm1 = RBM(num_visible=784, num_hidden=500)  # 假设输入是28x28的图像  
rbm2 = RBM(num_visible=500, num_hidden=250)  
dbn = DBN(rbm_layers=[rbm1, rbm2], output_size=10)  # 假设有10个类别  
  
# 编译模型(仅用于输出层)  
dbn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])  
  
# 假设X_train和y_train已经准备好  
# dbn.fit(X_train, y_train, epochs=10, batch_size=32)

上述代码是一个高度简化的示例,用于说明DBN的基本结构。

3.6.4.2.2. DBN训练过程

在实际应用中,你需要实现RBM的前向传播、反向传播(例如,使用CD-k算法)以及DBN的训练过程。以下是DBN训练过程python代码(示例):

深度信念网络(DBN)的训练过程通常分为两步:

首先是无监督的逐层预训练,然后是有监督的微调。

以下是一个简化的DBN训练过程的Python代码示例,使用了scikit-learnnumpy库。

首先,我们需要定义一个RBM类来实现受限玻尔兹曼机的功能:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WarghostWu

您的鼓励是我继续创作的最大助力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值