让人工智障具备信念吧,依莫拉萨~~~串频道+暴露年龄。。。不过深度信念和信念真的没啥关系,不知道为啥这样起名
目录
3.6. 深度信念网络(DBN)
3.6.1. 定义
深度信念网络是由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)堆叠而成的生成式图模型。
它包含多个层次,每一层都学习数据中的高级抽象特征。
在DBN中,最底层是可见层,负责接收输入数据;而顶层及其它所有隐藏层则是RBM。
3.6.2. 发展历史
深度信念网络由Geoffrey Hinton和他的研究小组在2006年首次提出。
这一模型的提出在深度学习领域具有里程碑意义,因为它通过无监督学习有效地训练多层神经网络,克服了传统神经网络训练的一些难题,推动了深度学习的发展。
3.6.3. 算法公式
在DBN中,每一层RBM的学习过程涉及到权重的调整。假设DBN由L层组成,第l层的RBM有权重矩阵和偏置向量
。前向传播过程(从可见层到隐层)中,对于第l层,其隐层变量
的激活概率由以下公式给出:
其中,是sigmoid函数,用于将线性加权和转化为概率分布。反向传播过程(从隐层到可见层)类似,但方向相反。
3.6.4. 运行原理
3.6.4.1. 基本原理
DBN的运行原理基于两个主要阶段:无监督的预训练和有监督的微调。
无监督的预训练:在这个阶段,每个RBM层独立地进行无监督训练,学习数据的分布。这通过对比散度(Contrastive Divergence)算法实现,该算法能够近似最大化数据的似然函数。
有监督的微调:在预训练完成后,DBN可以使用有标签的数据进行微调,以提高在特定任务上的性能。这通常通过反向传播算法和梯度下降来实现。
3.6.4.2. Python实现
3.6.4.2.1.简单实现
在Python中,我们通常使用深度学习库如TensorFlow或PyTorch来实现DBN。以下是一个简化的DBN实现示例,使用TensorFlow和Keras:
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Input
# 定义RBM模型
class RBM(tf.keras.Model):
def __init__(self, num_visible, num_hidden):
super(RBM, self).__init__()
self.num_hidden = num_hidden
self.num_visible = num_visible
self.weights = tf.Variable(tf.random.normal([self.num_visible, self.num_hidden]))
self.bias_hidden = tf.Variable(tf.zeros([self.num_hidden]))
self.bias_visible = tf.Variable(tf.zeros([self.num_visible]))
# ... (此处省略RBM的前向传播、反向传播等方法的实现)
# 定义DBN模型
class DBN(Model):
def __init__(self, rbm_layers, output_size):
super(DBN, self).__init__()
self.rbm_layers = rbm_layers
self.output_layer = Dense(output_size, activation='softmax')
def call(self, inputs):
x = inputs
for rbm in self.rbm_layers:
x = rbm(x) # 这里假设RBM类实现了__call__方法来进行前向传播
x = self.output_layer(x)
return x
# 示例:构建一个具有两个RBM层的DBN模型
rbm1 = RBM(num_visible=784, num_hidden=500) # 假设输入是28x28的图像
rbm2 = RBM(num_visible=500, num_hidden=250)
dbn = DBN(rbm_layers=[rbm1, rbm2], output_size=10) # 假设有10个类别
# 编译模型(仅用于输出层)
dbn.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# 假设X_train和y_train已经准备好
# dbn.fit(X_train, y_train, epochs=10, batch_size=32)
上述代码是一个高度简化的示例,用于说明DBN的基本结构。
3.6.4.2.2. DBN训练过程
在实际应用中,你需要实现RBM的前向传播、反向传播(例如,使用CD-k算法)以及DBN的训练过程。以下是DBN训练过程python代码(示例):
深度信念网络(DBN)的训练过程通常分为两步:
首先是无监督的逐层预训练,然后是有监督的微调。
以下是一个简化的DBN训练过程的Python代码示例,使用了scikit-learn
和numpy
库。
首先,我们需要定义一个RBM类来实现受限玻尔兹曼机的功能: