让游戏的AI具备“眼睛”和“视觉”,就是通过计算机视觉的方法进行的。现在,越来越多的游戏,特别是动捕类游戏都在使用这个方法。当然,计算机视觉不仅仅用于游戏,越来越多的应用使用到这个技术
目录
1. 定义
游戏AI运用计算机视觉,是指在游戏开发和运行过程中,利用计算机视觉技术使游戏中的角色(NPC)或系统能够识别、分析和理解游戏中的图像和视频数据,从而做出更加智能的决策和反应。
这种技术结合了图像处理、模式识别和机器学习,使游戏中的非玩家角色能够像人类一样“看到”并理解游戏世界。
2. 发展历史
计算机视觉的发展可以追溯到20世纪50年代,当时科学家们开始研究生物视觉的工作原理。
到了60年代,计算机视觉作为一个独立的领域开始萌芽。
70年代,开创性地提出了识别流程。
80年代则着眼于提取特征。
90年代则进行了图像分割的研究。
进入21世纪后,随着计算机运算能力的增强和深度学习算法的兴起,计算机视觉取得了长足的进步,特别是在目标识别、目标跟踪和场景理解等方面。
在游戏AI领域,计算机视觉的应用也随着技术的进步而不断发展。
现代游戏AI利用深度学习算法,能够处理复杂的图像数据,并在游戏中实现高度逼真的交互和决策。
3. 公式和函数
计算机视觉是一个涉及图像处理、模式识别、机器学习等多个领域的复杂学科,它利用计算机和相关算法来模拟人类的视觉系统,以实现对图像和视频的理解和分析。在计算机视觉中,公式和函数起着至关重要的作用,它们是实现各种视觉任务的基础。以下是对计算机视觉中一些常见公式和函数的详细介绍:
3.1. 图像处理基础公式
3.1.1. 灰度化公式
平均法:
将彩色图像的红色、绿色和蓝色通道的值相加后除以3,得到灰度值。公式为:
灰度值 = (R + G + B) / 3
3.1.2. 二值化公式
全局阈值法
将图像的灰度值与一个预设的阈值进行比较,大于阈值的像素点设置为白色(或黑色),小于阈值的像素点设置为黑色(或白色)。公式可简化为:
二值化结果 = (灰度值 > 阈值) ? 255 : 0。
3.2. 图像滤波公式
高斯滤波
高斯滤波是一种常用的图像平滑方法,它通过卷积操作对图像进行模糊处理,以去除噪声。高斯滤波的公式为:
滤波结果 = (像素点 * 滤波模板) / 滤波模板权值之和
其中,滤波模板是一个权重矩阵,其元素值由高斯函数计算得出。
3.3. 边缘检测公式
Sobel算子
Sobel算子是一种用于边缘检测的一阶导数算子。它通过计算图像在水平和垂直方向的梯度来检测边缘。Sobel算子的公式包括两个3x3的矩阵,分别用于计算水平梯度Gx和垂直梯度Gy。公式如下:
Gx = [-1 0 1; -2 0 2; -1 0 1] * 像素值
Gy = [-1 -2 -1; 0 0 0; 1 2 1] * 像素值
3.4. 特征提取公式
颜色直方图
颜色直方图是描述图像颜色分布的一种特征表示方法。它通过统计每个颜色通道的像素数量来构建直方图。公式可简单表示为:
颜色直方图 = 统计每个颜色通道的像素数量
3.5. 评估指标公式
在计算机视觉任务中,特别是分类和目标检测任务中,评估模型的性能是非常重要的。以下是一些常见的评估指标公式:
3.5.1. 准确率(Accuracy)
准确率是预测正确的样本数占总样本数的比例。公式为:
Accuracy = (TP + TN) / (TP + TN + FP + FN)
3.5.2. 召回率(Recall)/ 查全率
召回率(或查全率)是预测为正例的样本中实际为正例的比例。公式为:
Recall = TP / (TP + FN)
3.5.3. 精确率(Precision)/ 查准率
精确率(或查准率)是预测为正例的样本