雅可比行列式与积分

雅可比行列式与积分

雅可比行列式与积分的关系主要体现在它为积分在不同变量间的转换提供了关键的系数依据,保证了积分在变量替换前后的等价性。

从雅可比矩阵一节中,我们知道非线性变换在局部空间上可以看作是线性的,非线性微元与线性微元的变换矩阵就是雅可比矩阵。从二维角度雅可比矩阵的行列式的绝对值就是非线性微元与线性微元的缩放值。

雅可比行列式

雅可比行列式与二重积分关系密切,以下从多个角度进行详细阐述,并给出具体公式及示例:

变量变换中的雅可比行列式

设存在从变量(u,v)(u, v)(u,v)到变量(x,y)(x, y)(x,y)的变换x=x(u,v)x = x(u, v)x=x(u,v)y=y(u,v)y = y(u, v)y=y(u,v),且x(u,v)x(u, v)x(u,v)y(u,v)y(u, v)y(u,v)具有一阶连续偏导数,那么雅可比行列式J定义为:

J=∂(x,y)∂(u,v)=∣∂x∂u∂x∂v∂y∂u∂y∂v∣=∂x∂u∂y∂v−∂x∂v∂y∂u J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}\end{vmatrix} \\ =\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u} J=(u,v)(x,y)=uxuyvxvy=uxvyvxuy

二重积分中的变量替换公式

对于二重积分∫Df(x,y)dxdy\int_D f(x,y)dxdyDf(x,y)dxdy,通过变量变换x=x(u,v)x = x(u, v)x=x(u,v)y=y(u,v)y = y(u, v)y=y(u,v),积分区域DDDxyxyxy平面上,对应到uvuvuv平面上的区域为D′D'D,则有:

∫Df(x,y)dxdy=∫D′f(x(u,v),y(u,v))∣J∣dudv \int_D f(x,y)dxdy\\=\int_{D'} f(x(u,v),y(u,v)) \vert J\vert dudv Df(x,y)dxdy=Df(x(u,v),y(u,v))Jdudv

其中∣J∣\vert J\vertJ表示雅可比行列式JJJ的绝对值。这意味着在进行变量替换时,不仅要将被积函数中的xxxyyyuuuvvv表示,还要将面积微元dxdydxdydxdy替换为∣J∣dudv\vert J\vert dudvJdudv,这样才能保证积分在变量替换前后的数值相等。

公式推导思路

从微元的角度来看,在xyxyxy平面上,面积微元dxdydxdydxdy可以看作是由向量i⃗dx和j⃗dy\vec{i}dx和\vec{j}dyidxjdy所围成的小矩形的面积。在变量变换后,在uvuvuv平面上,对应的向量变为

a⃗=∂x∂ui⃗+∂y∂uj⃗\vec{a}=\frac{\partial x}{\partial u}\vec{i}+\frac{\partial y}{\partial u}\vec{j}a=uxi+uyjb⃗=∂x∂vi⃗+∂y∂vj⃗\vec{b}=\frac{\partial x}{\partial v}\vec{i}+\frac{\partial y}{\partial v}\vec{j}b=vxi+vyj,这两个向量所围成的平行四边形的面积为∣a⃗×b⃗∣\vert\vec{a}\times\vec{b}\verta×b,经过计算可得∣a⃗×b⃗∣=∣J∣dudv\vert\vec{a}\times\vec{b}\vert=\vert J\vert dudva×b=Jdudv,所以dxdy=∣J∣dudvdxdy=\vert J\vert dudvdxdy=Jdudv,从而得到二重积分的变量替换公式。

应用示例

计算∫D(x+y)2dxdy\int_D (x + y)^2dxdyD(x+y)2dxdy,其中DDD是由x+y=1x + y = 1x+y=1x+y=3x + y = 3x+y=3x−y=−1x - y = -1xy=1x−y=1x - y = 1xy=1所围成的区域。
u=x+yu = x + yu=x+yv=x−yv = x - yv=xy,则可解得x=u+v2x=\frac{u + v}{2}x=2u+vy=u−v2y=\frac{u - v}{2}y=2uv
计算雅可比行列式

J=∂(x,y)∂(u,v)=∣121212−12∣=−12 J=\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{vmatrix}=-\frac{1}{2} J=(u,v)(x,y)=21212121=21

∣J∣=12\vert J\vert=\frac{1}{2}J=21

原积分区域DDDuvuvuv平面上变为D′D'D1≤u≤31\leq u\leq31u3−1≤v≤1-1\leq v\leq11v1
原积分

∫D(x+y)2dxdy=∬D′u2⋅12dudv=12∫−11dv∫13u2du=263 \int_D (x + y)^2dxdy=\iint_{D'} u^2\cdot\frac{1}{2}dudv\\ =\frac{1}{2}\int_{-1}^{1}dv\int_{1}^{3}u^2du=\frac{26}{3} D(x+y)2dxdy=Du221dudv=2111dv13u2du=326

### 可比行列式的定义计算方法 可比行列式是基于可比矩阵的一个重要数学概念。可比矩阵表示一组多元函数的一阶偏导数以矩阵形式排列的结果[^1]。当这个矩阵为方阵时,其行列式被称为可比行列式。具体而言,对于 \(n\) 个变量和 \(n\) 个函数的系统 \(f_i(x_1, x_2, ..., x_n)\),可比矩阵 \(J\) 的元素为: \[ J_{ij} = \frac{\partial f_i}{\partial x_j} \] 如果可比矩阵为 \(n \times n\) 方阵,则可比行列式定义为其行列式值,记作: \[ \det(J) = \det\left(\frac{\partial f_i}{\partial x_j}\right) \] #### 计算方法 在实际应用中,可比行列式计算依赖于对偏导数的求解以及行列式的展开。例如,在二维空间中,若给定变换 \(x = r \cos(a)\) 和 \(y = r \sin(a)\),则可比行列式为: \[ \det(J) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial a} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial a} \end{vmatrix} = \begin{vmatrix} \cos(a) & -r\sin(a) \\ \sin(a) & r\cos(a) \end{vmatrix} = r(\cos^2(a) + \sin^2(a)) = r \] 上述结果表明,在极坐标变换下,面积元的缩放因子为 \(r\),这正是可比行列式的意义之一[^2]。 #### 可比行列式的意义 可比行列式在多重积分变换中起着关键作用。它描述了从一个坐标系到另一个坐标系的体积元变化比例。例如,在三维空间中的球坐标变换中,可比行列式决定了体积元的变化[^3]。此外,可比行列式还广泛应用于概率密度函数的变换公式中[^4]。 ```python import sympy as sp # 定义变量 r, a = sp.symbols('r a') # 定义变换 x = r * sp.cos(a) y = r * sp.sin(a) # 构建可比矩阵 J = sp.Matrix([[sp.diff(x, r), sp.diff(x, a)], [sp.diff(y, r), sp.diff(y, a)]]) # 计算可比行列式 det_J = J.det() print(det_J) ``` 运行上述代码将输出可比行列式的值 \(r\)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值