
CollAFL: Path Sensitive Fuzzing

Shuitao Gan1, Chao Zhang2�, Xiaojun Qin1, Xuwen Tu1, Kang Li3, Zhongyu Pei2, Zuoning Chen4

1State Key Laboratory of Mathematical Engineering and Advanced Computing. ganshuitao@gmail.com
2Institute for Network Science and Cyberspace, Tsinghua University. � chaoz@tsinghua.edu.cn

3Cyber Immunity Lab. 4National Research Center of Parallel Computer Engineering and Technology.

Abstract—Coverage-guided fuzzing is a widely used and ef-
fective solution to find software vulnerabilities. Tracking code
coverage and utilizing it to guide fuzzing are crucial to coverage-
guided fuzzers. However, tracking full and accurate path coverage
is infeasible in practice due to the high instrumentation overhead.
Popular fuzzers (e.g., AFL) often use coarse coverage information,
e.g., edge hit counts stored in a compact bitmap, to achieve highly
efficient greybox testing. Such inaccuracy and incompleteness in
coverage introduce serious limitations to fuzzers. First, it causes
path collisions, which prevent fuzzers from discovering potential
paths that lead to new crashes. More importantly, it prevents
fuzzers from making wise decisions on fuzzing strategies.

In this paper, we propose a coverage sensitive fuzzing solution
CollAFL. It mitigates path collisions by providing more accurate
coverage information, while still preserving low instrumentation
overhead. It also utilizes the coverage information to apply
three new fuzzing strategies, promoting the speed of discovering
new paths and vulnerabilities. We implemented a prototype of
CollAFL based on the popular fuzzer AFL and evaluated it on 24
popular applications. The results showed that path collisions are
common, i.e., up to 75% of edges could collide with others in some
applications, and CollAFL could reduce the edge collision ratio
to nearly zero. Moreover, armed with the three fuzzing strategies,
CollAFL outperforms AFL in terms of both code coverage and
vulnerability discovery. On average, CollAFL covered 20% more
program paths, found 320% more unique crashes and 260% more
bugs than AFL in 200 hours. In total, CollAFL found 157 new
security bugs with 95 new CVEs assigned.

I. INTRODUCTION

Memory corruption vulnerabilities are the root cause of
many severe threats to programs, including control flow hijack-
ing attacks [12, 37, 38] and information leakage attacks [36].
Both defenders and attackers are eager to discover vulnera-
bilities in programs. Attackers rely on vulnerabilities to break
target programs’ execution and perform malicious actions. De-
fenders could patch vulnerabilities to defeat potential attacks
if they could discover vulnerabilities in advance.

Coverage-guided fuzzing is one of the most popular vul-
nerability discovery solutions, widely deployed in industry. For
example, Google’s OSS-Fuzz platform [35] adopts several
state-of-art coverage-guided fuzzers, including libFuzzer [34],
honggfuzz [40], and AFL [45], to continuously test open
source applications. It has found over 1000 bugs in 5
months [3] with thousands of virtual machines.

First of all, tracking code coverage is crucial to coverage-
guided fuzzers. Accurate path coverage information could
help fuzzers perceive all unique paths and explore them to
find vulnerabilities. However, it is infeasible in practice to
track path coverage, due to the extraordinarily high instru-
mentation overhead. Fuzzers trade off the coverage accuracy
with performance. LibFuzzer [34] and honggfuzz [40] utilize

the SanitizerCoverage [4] instrumentation provided by the
Clang compiler, to track block coverage1. VUzzer [29] uses
the dynamic binary instrumentation tool PIN [24] to track
block coverage. AFL [45] (in GCC and LLVM mode) uses
static instrumentation with a compact bitmap to track edge
coverage, providing more information than block coverage.
Even for AFL, there is a known hash collision issue2, where
two different edges could have a same hash and thus share
a same record in the coverage bitmap. It causes a loss in the
accuracy of edge coverage. Our experiments showed that up to
75% of edges could collide with others in some applications.

More importantly, utilizing coverage information to guide
fuzzing is crucial to coverage-guided fuzzers. AFL utilizes
the edge coverage information to identify seeds (i.e., good
testcases contributing to the coverage), and adds them to a seed
pool waiting for further mutation and testing. AFLfast [11]
further utilizes the edge coverage information to prioritize and
select seeds (from the pool) exercising less-frequent paths for
mutation, to improve the efficiency of path discovery. VUzzer
utilizes the block coverage information to deprioritize test-
cases exercising error-handling blocks and testcases exercising
frequent paths. However, fuzzers fail to make the optimal
decisions given the code coverage information is inaccurate.
Moreover, few fuzzers utilize code coverage information to
directly drive fuzzing towards non-explored paths.

To our knowledge, the consequence of coverage inaccu-
racy is overshadowed by the great success of fuzzers and
thus has not been systematically evaluated. In this paper, we
demonstrate that it actually has a crucial impact on fuzzers’
abilities. We also demonstrate that, if accurate edge coverage
can be achieved with low overhead and proper coverage-guided
fuzzing strategies are deployed, fuzzers could significantly
improve their abilities to exploring paths and finding bugs.

A. How does coverage inaccuracy blur bug finding?

First, the coverage inaccuracy could cause fuzzers fail to
differentiate two different program paths in some cases. If a
testcase exercising a new path that collides with a previously
explored path, the fuzzer could wrongly classify it as not
interesting, and miss the chance to thoroughly test this path
or explore related paths. As a result, it will cause a loss in
code coverage, and even miss potential vulnerabilities hidden
in these paths. Similarly, the fuzzer could also wrongly classify
a newly found vulnerability as not interesting, because its path
collides with a previously found vulnerability.

1SanitizerCoverage claims supporting edge coverage in its documentation.
But it is just an enhanced version of block coverage. More details will be
discussed in Section II-C.

2http://lcamtuf.coredump.cx/afl/technical_details.txt

Second, and more importantly, the coverage inaccuracy
blurs fuzzing strategies. For example, it prevents fuzzers from
making optimal decisions on selecting seeds to mutate and test.
For example, AFLfast [11] prioritizes seeds that exercise less-
frequent paths, which may be inaccurate given the coverage is
captured by an approximate bitmap. AFLgo [10] prioritizes
seeds closer to target locations, requiring an accurate path
coverage information too. As a result, the coverage inaccu-
racy issue will render these fuzzers’ seed selection policies
inefficient, slowing down the speed of bug finding.

B. How to improve coverage accuracy and guide fuzzers?

As aforementioned, tracking accurate path coverage is
infeasible in practice, but tracking edge and block coverage are
possible. The edge coverage provided by AFL provides more
information than block coverage solutions. Moreover, AFL’s
coverage tracking solution introduces lower runtime overhead
than others as well. As a result, we could port AFL’s coverage
tracking solution to other fuzzers, to improve their coverage
accuracy. However, AFL’s edge coverage itself is imperfect due
to the hash collision issue. A straightforward solution to this
issue is enlarging the size of the bitmap used by AFL to store
coverage. As our experiments showed, this solution could not
eliminate all hash collisions for known edges, but introducing
a significant overhead.

This paper presents a coverage sensitive fuzzing solu-
tion CollAFL, which resolves AFL’s hash collision issue and
improves its coverage accuracy without performance loss.
Furthermore, CollAFL not only leverages the accurate edge
coverage information, but also uses three newly designed
fuzzing strategies to drive the fuzzer towards non-explored
paths, improving the efficiency of vulnerability discovery.

CollAFL resolves the hash collision issue in AFL by
ensuring that each edge in a target program has a unique
hash, so that AFL could differentiate any two edges. More
specifically, we analyze the control flow graph of the target
application to get a list of known edges. A carefully designed
hash scheme is used to assign IDs to basic blocks and compute
hashes for all edges, ensuring that the instrumentation cost is
low and collisions are eliminated for known edges.

Once the hash collision issue is resolved, fuzzers can obtain
accurate edge coverage information, enabling coverage sensi-
tive fuzzing strategies, e.g., seed selection policies. Accurate
edge coverage allows a fuzzer to prioritize seeds based on fine-
grained properties associated to the seeds’ execution paths,
e.g., the number of memory-access operations, untouched
neighbor-branches and untouched neighbor-descendants along
each path. Correspondingly, this paper proposes three new seed
selection policies: memory-access guided, untouched-branch
guided, and untouched-descendant guided, each prioritizes
the seed selection based on the path properties mentioned
above. All these policies showed improvements to the fuzzer’s
efficiency of path and vulnerability discovery.

C. How well does coverage sensitive fuzzing perform?

We implemented a prototype of CollAFL based on the
popular coverage-guided fuzzer AFL. We evaluated CollAFL
on the LAVA-M dataset [14] and 24 open source applications.
The evaluation results demonstrate that:

• The hash collision issue is prevalent in real world appli-
cations, up to 75% edges could be conflicted with others;

• The collision mitigation solution we proposed could re-
solve all hash collisions for known edges, and could help
the fuzzer to explore 9.9% more code, find 250% more
unique crashes and 140% more security bugs on average.

• The untouched-branch guided seed selection policy (to-
gether with collision mitigation) could further improve the
fuzzer’s efficiency of path and bug discovery. On average,
it helps the fuzzer to explore 20% more code, finds 320%
more unique crashes and 260% more security bugs.

In total, we have found 157 security vulnerabilities in these
24 open source applications and reported them to upstream
vendors. And 23 of them have been reported by other re-
searchers but not exposed to public. Among the remaining
134 vulnerabilities, 95 of them are confirmed by CVE. To
summarize, this paper makes the following contributions:

• We studied the negative impact of coverage inaccuracy
in coverage-guided fuzzers. Especially, we demonstrated
that the hash collision issue in AFL severely limit its
efficiency of path and vulnerability discovery.

• We designed an algorithm to resolve the hash collision
issue in AFL, improving its edge coverage accuracy with
a low-overhead instrumentation scheme (which is faster
than AFL in most cases).

• We proposed three new coverage sensitive seed selection
policies. Our empirical results confirmed that prioritizing
seeds based on accurate edge coverage information sig-
nificantly improves fuzzers’ performance.

• We implemented a prototype CollAFL based on AFL,
and evaluated it on 24 open source applications. The
effectiveness of CollAFL has been partially validated by
its ability to find more than a hundred new security
vulnerabilities in previously well-tested applications.

II. BACKGROUND AND RELATED WORK

A. Fuzzing

Fuzzing is currently the most effective and efficient state-
of-art vulnerability discovery solution. In general, fuzzers will
first generate a massive number of testcases to test target
applications, then monitor applications’ runtime executions
and report bugs when security violations are detected. Fuzzers
are usually easy to setup and could be scaled up to large appli-
cations. Thus fuzzing has become the dominant vulnerability
discovery solution in the industry.

Fuzzers usually use two types of testcase generation so-
lutions: grammar-based and mutation-based. Grammar-based
fuzzers [15, 17] generate testcases based on known input
grammar. Following the grammar, fuzzers could generate valid
testcases and cover a major part of program paths. But they
require much engineering work to translate input grammar, and
fail to handle applications without known grammar.

On the other hand, mutation-based fuzzers [20, 34, 45]
mutate existing testcases to generate new testcases without
dependency on input grammar, and thus have a better scalabil-
ity. Due to the simplicity and scalability, the mutation-based
solution is widely adopted in practice.

Seed
Pool

Select Mutate

Filter

seed

Security
Sanitizers

Coverage

Security

Target
App Instrument

seedseedtestcases

Hash
Algor.

Initial
Inputs

control &
data flow

where and
what

Taint
Ana.

Vulner-
abilities

Test and Track

Fig. 1: The general workflow of coverage-guided fuzzing solutions.

A

B1 B2

C1 C2

D

P1:
 ...
 ->A->B1->C1->D->
 ...
 ->A->B2->C2->D->
 ...

P2:
 ...
 ->A->B1->C2->D->
 ...
 ->A->B2->C1->D->
 ...

foo:

Fig. 2: Coverage inaccuracy

However, trivial mutation-based fuzzers usually have a poor
code coverage. For example, they may be blocked by input
format checks and could not trigger deeper vulnerabilities.
Researchers thus did a lot of work on improving these fuzzers’
code coverage and efficiency in fuzzing.

B. Coverage-guided Fuzzing

Towards improving the code coverage, one of the most
successful solutions is coverage-guided fuzzing. It employs
an evolving algorithm to drive fuzzers towards a high code
coverage. AFL [45], libFuzzer [34], honggfuzz [40] and
VUzzer [29] are some state-of-art coverage-guided fuzzers.

Figure 1 shows the general workflow of a coverage-guided
fuzzer. It usually maintains a pool of seed testcases and
performs a continuous fuzzing loop: (1) select seeds from the
pool with a specific policy, (2) mutate the seeds to generate
a batch of new testcases, (3) test target applications with
these new testcases at a high speed, (4) monitor the program
execution with instrumentations, to track its code coverage as
well as security violations, (5) report vulnerabilities if security
violations are detected, (6) filter good testcases contributing to
code coverage and put them into the pool, and go to step 1.
Following this continuous loop, fuzzers prioritize seeds con-
tributing coverage, and evolve towards a high code coverage.

Studies have shown that improvements to each step of this
loop could promote the efficiency and effectiveness of fuzzers.
There are many factors to a fuzzer’s success, including speed
of testing, coverage accuracy, seed selection policies, seed
mutation policies, and sensitivity to security violations etc.

For example, in step 3, several optimizations are proposed
to improve the speed and throughput of fuzzers. AFL utilizes
the fork mechanism provided by Linux to accelerate, and fur-
ther adopts the forkserver mode and persistent mode to reduce
the burden of fork. Moreover, AFL also supports a parallel
mode3, enabling multiple fuzzer instances to collaborate with
each other. Wen Xu et.al. proposes several new primitives [44],
speeding up AFL by 6.1 to 28.9 times.

In step 4, fuzzers could use different mechanisms, e.g.,
static instrumentation, dynamic binary instrumentation, debug-
ging or even system emulation, to instrument target appli-
cations and track useful information. AFL utilizes GCC and
Clang compilers to perform static source instrumentation, and
utilizes QEMU to perform dynamic binary instrumentation.

3https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt

VUzzer utilizes the tool PIN [24] to perform dynamic binary
instrumentation. Syzkaller [5] and kAFL [31] utilize QEMU
as well as hardware features (e.g., Intel PT) to instrument.

In step 5, fuzzers often use program crashes as an indicator
of vulnerabilities, because they are easy to detect even with-
out instrumentation. However, programs do not always crash
when a vulnerability is triggered, e.g., when a padding byte
following an array is overwritten. Researchers have proposed
several solutions to detect kinds of security violations. For
example, the widely used AddressSanitizer [32] could detect
buffer overflow and use-after-free vulnerabilities. There are
many other sanitizers available, including UBSan [22], Mem-
orySanitizer [39], LeakSanitizer [30], DataFlowsanitizer [2],
ThreadSanitizer [33], and HexVASan [9].

In following sections, we will go over other steps in detail.

C. Coverage Tracking

Coverage-guided fuzzers utilize coverage information to
drive fuzzing (step 6). As aforementioned, coverage inaccuracy
blurs bug finding. So, it is essential for fuzzers to track accurate
coverage. But readers should also be aware that coverage
accuracy is just one factor to the success of fuzzers.

Different program paths exhibit different program behav-
iors and thus may have different vulnerabilities. Accurate path
coverage could help fuzzers perceive different paths. However,
it is infeasible to track all path coverage (especially the order of
edges) at runtime, because the count of paths is extraordinary
high and the storage overhead of each path is high.

In practice, coverage-guided fuzzers track different levels
of code coverage. For example, LibFuzzer [34] and hong-
gfuzz [40] utilize the SanitizerCoverage [4] instrumentation
method provided by the Clang compiler, to track block cover-
age. VUzzer [29] uses PIN to track block coverage. AFL [45]
uses static/dynamic instrumentation to track edge coverage.

Given edge coverage, we could of course infer block cov-
erage. In some cases, we could even infer edge coverage from
block coverage. SanitizerCoverage further removes critical
edges to secure the latter inference4, and claim to support
edge coverage. But it is just an enhanced version of block
coverage. Block coverage provides fewer information than
edge coverage. Critical edge is just one factor that hinders
inferring edge coverage from block coverage. As shown in
Figure 2, there are no critical edges in function foo. Two

4https://clang.llvm.org/docs/SanitizerCoverage.html#edge-coverage

program paths P1 and P2 share most of their edges, except
that they take different sub-paths in function foo. So the block
coverages of P1 and P2 are exactly the same, but their edge
coverages are different. For example, the edge B1->C1 only
exists in path P1.

For fuzzers tracking block coverage, e.g., libFuzzer, hongg-
fuzz and VUzzer, a solution to improve their coverage accuracy
is replacing their tracking schemes with edge coverage track-
ing, e.g., the one used by AFL. However, the edge coverage
provided by AFL is imperfect.

a) Hash Collision Issue: AFL utilizes a bitmap (default
size 64KB) to track applications’ edge coverage. Each byte of
the bitmap represents the statistics (e.g., hit count) of a specific
edge. A hash is computed for each edge, and used as the key
to the bitmap. There is a hash collision issue in this scheme,
i.e., two edges could have a same hash. So the fuzzer could
not differentiate these edges, causing the coverage inaccuracy.

More specifically, AFL instruments the target application
and assigns random keys to its basic blocks. Given an edge
A->B, AFL then computes its hash as follows:

cur ⊕ (prev � 1) (1)

where prev and cur are keys of the basic block A and B
respectively. Due to the randomness of keys, two different
edges could have a same hash. Moreover, the number of edges
is high (i.e., comparable to the bitmap size 64K), the collision
ratio would be very high, considering the birthday attack [16].

To our knowledge, the consequence of coverage inaccuracy
is overshadowed by the great success of fuzzers and thus has
not been systematically evaluated. Our experiments showed
that as high as 75% edges could be invisible to AFL in real
world applications due to the hash collision issue, greatly
limiting AFL’s abilities. This issue is addressed in this paper.

D. Seed Selection Policies

Recent studies [10, 11] showed that, the seed selection
policy (i.e., step 1 in the fuzzing loop) is crucial to coverage-
based fuzzers. A good seed selection policy could improve the
fuzzer’s speed of path exploring and bug findings.

AFL prioritizes seeds that are smaller and executed faster,
and thus it is likely that more testcases could be tested in
a given time. Honggfuzz selects seeds sequentially, and Lib-
Fuzzer prioritizes seeds that hit more new blocks. VUzzer [29]
prioritizes seeds that exercise deeper paths, and deprioritizes
testcases exercising error-handling blocks and frequent paths,
and thus it is likely that hard-to-reach paths could be tested
and useless error-handling paths will be avoided. AFLfast [11]
prioritizes seeds exercising less-frequent paths and being se-
lected fewer, and thus it is likely that cold paths could be tested
thoroughly and fewer energy will be wasted on hot paths.

The seed selection policy could also strengthen the fuzzer’s
ability in a specific direction. For example, QTEP [42] pri-
oritizes seeds covering more faulty code that are identified
by static analysis, increasing the probability of triggering
vulnerabilities during testing. SlowFuzz [27] prioritizes seeds
that use more resources (e.g., CPU, memory and energy),
increasing the probability of triggering algorithmic complexity
vulnerabilities. AFLgo [10] prioritizes seeds that are closer to

predetermined target locations (e.g., new commits waiting for
reviews), enabling efficient directed fuzzing.

However, fuzzers fail to make the optimal decisions on
seed selecting, given the code coverage information is not
accurate. For example, AFLfast may wrongly classify a cold
path as hot path if their hashes collide, and thus causes this
cold path poorly tested and potential vulnerabilities missed.
Moreover, few fuzzers utilize code coverage information to
directly drive fuzzing towards non-explored paths. This paper
proposes several new policies to address this issue.

E. Seed Mutation Policies

Mutating seeds (i.e., step 2 in the fuzzing loop) is essential
to coverage-guided fuzzers. AFL and libFuzzer etc. basically
use a set of deterministic and random algorithms to mutate
seeds and generate new testcases. Seed mutation policies are
related to several core questions: (1) sources of seeds, (2)
where to mutate, and (3) what value to use for the mutation.

A set of good seeds could help generate good mutations.
IMF [19] learns the order and value dependency between
syscalls from normal application executions, and then gener-
ate testcases accordingly, enabling finding many deep kernel
bugs. Skyfire [41] learns a probabilistic context sensitive
grammar from abundant inputs to guide testcase generation.
DIFUZE [13] leverages static analysis to compose valid inputs
in the user space to test kernel drivers. Recently, researchers
utilize AI techniques to help fuzzing. Patrice Godefroid et.al.
proposes a RNN (Recurrent Neural Network) solution [18]
to generate valid seed files, and could help generate inputs
to pass format checks, improving the code coverage. Nicole
Nichols et.al. proposes a GAN (Generative Adversarial Net-
work) solution [26] to argument the seed pool with extra seeds,
showing another promising solution. However, more research
are required to further improve the quality of seed inputs.

Another core question of mutation is where to mutate.
VUzzer [29] uses control-flow and data-flow features to infer
bytes to mutate (e.g., magic bytes), useful for certain types of
data fields. Zhiqiang et.al. proposed a solution [23] to identify
sensitive bytes to mutate using static data lineage analysis.
Mohit Rajpal et.al. proposes a DNN (Deep Neural Network)
solution [28] to predicate which bytes to mutate, showing
promising improvements. TaintScope [43] uses taint analysis
to recognize checksum bytes and fix them during testing.

The other core question of mutation is what value to use for
mutation. VUzzer [29] uses dynamic analysis to infer interest-
ing values (e.g., magic numbers) to use for mutating. Hongg-
fuzz [40] deploys a similar strategy to recognize interesting
values (i.e., operands of cmp instructions) at runtime and
greatly improve its path coverage. Laf-intel [1] transforms the
target application, to split long string or constant comparison
into several small comparison statements, enabling the fuzzer
to find the matching mutation and exercise new paths faster.

F. Focus of this Paper

To improve fuzzers’ efficiency of bug finding, we propose
CollAFL, a coverage sensitive fuzzing solution. The compo-
nents in yellow in Figure 1 demonstrate the focus of our solu-
tion. In short, it first improves the accuracy of code coverage
tracking, and then utilizes the accurate coverage information

to guide the fuzzer, by replacing the seed selection policies.
More details will be discussed in the following sections.

Research on seed mutation policies, optimizations to testing
performance and instrumentation schemes, as well as fine-
grained security sanitizers, are orthogonal to our proposed
work. Our solution could also benefit from those work.

III. IMPROVE COVERAGE ACCURACY

As aforementioned, coverage inaccuracy blurs fuzzers’
ability of bug finding, causing certain paths invisible to fuzzers.
The first improvement of CollAFL over existing coverage-
guided fuzzers is coverage accuracy. It could help fuzzers
explore more paths and find more vulnerabilities.

We have studied different types of coverage granularity,
and figure out edge coverage is the best choice, which has
reached a good balance between instrumentation overhead and
coverage accuracy. We further point out the inaccuracy issue in
current edge coverage implementation, and propose a solution.

A. Coverage Granularity

There are three common types of coverage granularity, i.e.,
block coverage, edge coverage and path coverage. Each of
them has its pros and cons.

A typical block coverage solution would track the hit count
of each block during testing. It is widely adopted by fuzzers,
e.g., VUzzer, libFuzzer and honggfuzz. However, it does not
track the order of blocks, causing loss in coverage information.
Figure 2 shows two different paths sharing the exact same
number of blocks hit, and thus one of them is invisible to
block-coverage fuzzers.

A typical edge coverage solution would track the hit count
of each edge. A representative implementation is the one used
by AFL. The instrumentation overhead is similar to block
coverage solutions’. However, it does not track the order of
edges, losing some information too.

Path coverage solutions will track the order of edges,
providing the most complete code coverage information.
However, the length of a path is very long, and the number of
paths in an application is large, and thus the runtime overhead
and memory overhead of tracking path coverage is extremely
high. In practice, it is infeasible to track path coverage.

So, edge coverage solutions reach certain balance between
efficiency and coverage information. However, even for the
representative edge coverage solution AFL, there is a hash
collision issue causing inaccuracy. CollAFL adopts the edge
coverage tracking scheme and fixes the collision issue. Other
fuzzers (e.g., VUzzer) could also benefit from this scheme.

B. Trivial Solution for Hash Collision

A straightforward solution to this issue is enlarging the
space of hashes, i.e., the bitmap size in AFL’s implementation.
However, as explained by AFL itself, the current default
bitmap size (i.e., 64KB) is a trade-off for performance.

The size of the map is chosen so that collisions are sporadic
with almost all of the intended targets, which usually sport
between 2k and 10k discoverable branch points. At the same

p = load _prev
h = xor p, (_cur >> x)
h += z
bitmap[h] += 1
store _prev, (_cur >> y)

// c is a constant
// for this block

bitmap[c] += 1
store _prev, (_cur>>y)

p = load _prev
h = lookup(p, _cur)
bitmap[h] += 1
store _prev, (_cur>>y)

(1) Fmul (2) Fhash (3) Fsingle

Fig. 3: Illustration of the new hash algorithms for blocks. _cur
is the key assigned to the current block, _prev is a global
variable for caching the key assigned to last-executed block.

time, its size is small enough to allow the map to be analyzed
in a matter of microseconds on the receiving end, and to
effortlessly fit within L2 cache.5.

We have evaluated this solution’s efficiency, and confirmed
that the fuzzer’s performance drops quickly if we enlarge the
bitmap size. As shown in Section V-A, in order to reduce the
hash collision ratio to 5%, we have to increase the bitmap size
from 64KB to 4MB, causing a 60% of execution speed drop-
off. Even worse, we could not guarantee eliminating collisions
by just enlarging the bitmap, due to the randomness. So, this
is not the right solution to the hash collision issue.

C. CollAFL’s Solution to Hash Collision

As shown in Equation 1, AFL uses a fixed formula to com-
pute hash for each edge, which is fast but prone to collision.
we refine it by carefully applying different hash formulas for
different edges, to eliminate hash collisions while preserving
the speed of hash computation and coverage tracking.

In general, given two blocks A and B with keys prev and
cur, we compute the hash for edge A->B as follows:

Fmul(cur, prev) = (cur � x)⊕ (prev � y) + z (2)

where <x, y, z> are parameters to be determined, which
could be different for different edges. The Equation 1 used by
AFL is a specific form of this algorithm, i.e., <x=0, y=1,
z=0> for all edges/blocks. The computation process of Fmul
is same as AFL, having the same overhead.

As shown in Figure 3, we could choose a set of parameters
for each end block, rather than each edge, to compute the
edge hashes. For simplicity, a same parameter y will be shared
between blocks, and the value (prev � y) will be cached in
the global variable _prev. Each block could have a different
set of parameters <x, z>.

Thus, given an application, we could try to find a solution
of parameters for each basic block, ensuring all edges’ hashes
computed via Fmul are different. We use a greedy algorithm
to search parameters of each block one by one. Once a solution
to all blocks is found, we could differentiate any two edges
using their hashes, and thus resolve the hash collision issue.

However, we could not guarantee to find a solution for a
given application, because there are too many basic blocks
in an application and we could not traverse all possible
parameters. And even if we could do so, we could not
guarantee a solution exists, because the keys for basic blocks
are randomly assigned. Thus, we further refine the proposed
hash computation algorithm as follows.

5http://lcamtuf.coredump.cx/afl/technical_details.txt

1) Hash Algorithm for Blocks with Single Precedent: If a
block has only one precedent, as shown in Figure 3(3), we
could directly assign a hash for this edge in the ending block,
rather than using the Equation 2 to compute one, as long as
this hash does not collide with any other edges’.

So, for a block B with only one precedent block A, we do
not need to find a combination of parameters <x, y, z>,
but just a unique hash for its sole incoming edge A->B. We
thus introduce a different hash algorithm for it as follows:

Fsingle(cur, prev) : c (3)

where prev and cur are keys assigned to block A and B, and
parameter c is a unique constant to be determined.

This hash value c could be resolved offline and then hard-
coded in the end block B. So, CollAFL is much faster than
AFL to get such edges’ hashes. As our experiments showed,
more than 60% basic blocks have only one precedent block in
most applications. So, it could save a lot of runtime overhead,
improving the throughput of the fuzzer.

Furthermore, these hashes could be resolved at any time.
So, to avoid conflicts, we could wait until all other edges’
hashes are determined, and then pick unused hashes and assign
them to blocks with only one precedent block.

2) Hash Algorithm for Blocks with Multiple Precedents: If
a block B has multiple precedent blocks, i.e., B has multiple
incoming edges, we have to dynamically compute the hashes
in the block B, because the incoming edge being hit is only
known at runtime. In general, we will use the aforementioned
Equation 2 to compute hashes.

As discussed earlier, we could not guarantee to find a
solution to this equation to avoid collision, even after removing
blocks with only one precedent. We use a greedy algorithm to
resolve parameters for these blocks. We denote blocks that we
could resolve as solvable blocks, and denote blocks that we
could not resolve as unsolvable blocks.

For an unsolvable block B, we introduce another hash
algorithm for its incoming edge A->B as follows:

Fhash(cur, prev) : hash_table_lookup(cur, prev) (4)

where prev and cur are keys of block A and B. It builds a
hash table offline, with unique hashes for all edges ending with
unsolvable blocks, different from all other edges’ hashes. At
runtime, it lookups this precomputed hash table, to get hashes
for such edges, using their start and end blocks as the key.

At runtime, a hash table lookup operation is much slower
than previous algorithms Fmul and Fsingle. So, we should
limit the set of unsolvable blocks to as small as possible.
According to our experiments, this set is usually empty.

3) Overall Mitigation Solution: First of all, we should
ensure the bitmap size (i.e., size of the hash value space) is
larger than the number of edges, otherwise there is no way
to avoid hash collision. Then, with the three proposed hash
formulas, i.e., Fmul, Fsingle and Fhash, we could resolve
hash collisions for all edges, by applying different formulas to
them depending on their types as follows:

F =

 Fmul, Solvable blocks with multi pred
Fhash, Unsolvable blocks with ...

Fsingle, Blocks with single precedent
(5)

Algorithm 1 The collision mitigation algorithm.
Input: Original program
Output: Instrumented program

1: (BBS, SingleBBS, MultiBBS, Preds) = GetCFG()
2: Keys = AssignUniqRandomKeysToBBs(BBS)
3: // Fixate algorithms. Preds and Keys are common arguments
4: (Hashes, Params, Solv, Unsolv) = CalcFmul(MultiBBS)
5: (HashMap, FreeHashes) = CalcFhash(Hashes, Unsolv)
6: // Instrument program with coverage tracking.
7: InstrumentFmul(Solv, Params)
8: InstrumentFhash(Unsolv, HashMap)
9: InstrumentFsingle(SingleBBS, FreeHashes)

Algorithm 1 shows the overview of this solution.
a) Preprocess the application: We first retrieve the

basic block and precedent information of the target applica-
tions provided by any static analysis tool or compiler. As
shown in line 1, we could get the set of basic blocks BBS
in the program, and split it into two sub-sets SingleBBS
and MultiBBS, depending on whether the block has single
or multiple precedents. The precedent information of each
basic block is stored in the map Preds. In line 2, it assigns
unique random keys to each basic block in the program. This
assignment information is stored in the map Keys.

b) Determine algorithms for blocks: As shown in
line 4, we first try to find proper parameters for blocks with
multiple precedents using CalcFmul, and get the set of
solvable blocks Solv and unsolvable blocks Unsol, as well
as the parameters for solvable blocks Params, and Hashes
taken by edges solved so far. In line 5, we build a hash map
HashMap for unsolvable blocks Unsol using CalcFhash,
and get the set of unused hashes FreeHashes not taken by
any edge solved so far.

Algorithm 2 demonstrates the workflow of CalcFmul,
i.e., how to search parameters for blocks with multiple prece-
dents. It first picks a parameter y and then iterates each
block BB, and traverse all combinations of <x,z> to find a
combination, such that hashes of all edges ending with this
block are different from others. If no combination could be
found, this block will be classified as unsolvable and put into
Unsol. Otherwise, the block will be put into Solv, and the
solution will be put into Params. Once all basic blocks with
multiple precedents are handled, and the Unsol set is small
enough, we found a solution to the question. Otherwise, we
will pick another parameter y and go on the previous process.

Algorithm 3 (in Appendix A) demonstrates CalcFhash,
i.e., how to build the hash table for unsolvable blocks Unsol.
In short, it picks random unused hashes for each edge ending
with unsolvable block, and store it in the hash map HashMap.
It also returns the set of unused hashes FreeHashes.

c) Instrument blocks: We then instrument the appli-
cation to track edge coverage, as shwon in Figure 3. For
solvable blocks Solv, we instrument each of them with Fmul,
i.e., same as AFL, but with different parameters <x,y,z> in
Params. For unsolvable blocks Unsolv, we instrument each
of them with Fhash, to search hash values in HashMap for
edges ending with these blocks at runtime. For blocks with sin-
gle precedent, we hard-code an unused hash in FreeHashes
for each of them. In this way, we could eliminate hash
collisions for all known edges.

Algorithm 2 CalcFmul

Input: MultiBBS, Keys[], Preds[]
Output: Hashes, Params, Solv, Unsolv

1: for y = 1 to log2MAPSIZE do
2: Hashes=∅, Params=∅, Solv=∅, Unsolv=∅
3: for BB in MultiBBS do
4: // search parameters for BB
5: for x=1 to log2MAPSIZE do
6: for z=1 to log2MAPSIZE do
7: tmpHashSet=∅, cur=Keys[BB]
8: // hashes for all incoming edges via Equation 2
9: for p ∈ Preds[BB] do

10: edgeHash = (cur � x) ⊕ (Keys[p] � y) + z
11: tmpHashSet.add(edgeHash)
12: end for// iterate precedents
13: // Found a solution for BB if no collision
14: if sizeof(tmpHashSet) = sizeof(Preds[BB]) and

tmpHashSet ∩ Hashes == ∅ then
15: Solv.add(BB)
16: Params[BB] = <x, y, z>
17: Hashes.extend(tmpHashSet)
18: end if
19: end for// iterate z
20: end for// iterate x
21: Unsolv.add(BB)
22: end for// iterate BB
23: // Found a good solution, if Unsol is small enough.
24: if sizeof(Unsol) < ∆ or sizeof(Unsol)

sizeof(BBSet) < δ then
25: break
26: end if
27: end for// iterate y
28: return (Hashes, Params, Solv, Unsolv)

D. Performance analysis.

As discussed earlier, the performance overhead of these
three proposed hash algorithms are as follows,

cost(Fhash) > cost(Fmul) > cost(Fsingle) ≈ 0 (6)

On the other hand, according to the experiments, most
of the basic blocks have only one precedent block, and the
number of unsolvable blocks is very small.

num(Fsingle) > num(Fmul)� num(Fhash) ≈ 0 (7)

In total, the overall performance cost introduced by the hash
computation used by CollAFL is small. As shown in the
evaluation Table II, our solution introduces fewer instructions
and lower performance cost than AFL for most applications.

E. Implementation Details

CollAFL is built based on the edge-coverage guided fuzzer
AFL. We extend AFL’s llvm_mode, and write a Clang link
time optimization pass to (1) retrieve the required basic block
and edge information, (2) assign unique keys to each basic
block, (3) resolve the hash computation algorithm for each
basic block depending on its type, and (4) instrument each
block with the hash computation and coverage tracking code.
By following the algorithms in Section III-C and Figure 3, it
is easy to implement the last three steps.

For the first step, we use Clang’s default implementation
to get the successor and precedent information, e.g., via
API llvm::TerminatorInst::getSuccessor. How-
ever, it is an open challenge to resolve the targets of indirect
control transfer offline, affecting the precision of the precedent
information we need. For example, it may wrongly classify
some basic blocks as single (or none) precedent blocks.

We thus take two extra steps to refine the results. First,
we mark entry blocks of functions that are not directly called
by anyone as multi-precedent blocks. Moreover, we unwind
indirect call instructions to a set of direct calls and an indirect
call instruction, similar to the de-virtualization technique [25].
It thus connects some basic blocks together, reducing the
number of single-precedent blocks. As a result, we will use
the Fmul, rather than Fsingle, to compute hashes for these
blocks, reducing the probability of collision at runtime.

The accuracy of edge information affects the number of
edges we are aware of. As our collision mitigation solution
only ensures eliminating collisions for known edges, it is
possible that there are some edge collisions at runtime even
with CollAFL. Moreover, CollAFL currently only works for
applications with source code. But it should also work on
binaries, except that the edge information is less accurate. We
will evaluate its performance on binaries in the future work.

IV. PRIORITIZE SEED SELECTION

Existing seed selection policies mainly focus on execution
speed, path frequency and path depth, but none of them focus
on directly driving the fuzzer towards non-explored paths.
Towards this goal, we have two intuitions that could help:

• If a path has many non-explored (or untouched) neighbor
branches, then it is very likely that mutations from this
path would explore those non-explored branches.

• If a path has many non-explored (or untouched) neighbor
descendants, then it is very likely that mutations from this
path would explore those non-explored descendants.

The eventual goal is to increase the effectiveness of vulnera-
bility discovery. Towards this goal, we have another intuition:

• If a path has many memory access operations, it is likely
to trigger potential memory corruption vulnerabilities, so
do its mutations.

Mutations following these intuitions could guide the fuzzer
to explore more paths and discover more vulnerabilities. We
thus propose three novel seed selection policies based on these
intuitions.

It is worth noting that, these policies are not limited to any
fuzzer. As long as the edge coverage information is provided,
we could apply these policies to the fuzzer and improve its
efficiency in vulnerability discovery.

A. Untouched-neighbour-branch guided policy

In this policy, seeds with more untouched neighbor
branches will be prioritized to fuzz. We believe mutations
based on these seeds have a higher probability to explore those
untouched neighbor branches. For simplicity, we denote this
policy as CollAFL-br.

More specifically, we use the number of untouched neigh-
bor branches as the weight of a testcase T as follows:

Weight_Br(T) =
∑

bb∈Path(T)
<bb,bbi>∈EDGES

IsUntouched(< bb, bbi >)

(8)
where function IsUntouched returns 1 if and only if the edge
<bb, bbi> is not covered by any previous testcase, otherwise 0.

Seeds with higher weights will be prioritized to be fuzzed
in this policy. It is worth noting that, the set of previously
exercised testcases will change as the testing goes on, so the
return value of the function IsUntouched will also change.
As a result, the weight of a testcase is dynamic.

It is worth noting that, we will iterate a basic block multiple
times if it is hit multiple times by the testcase. So, a block in
loops will contribute more to the overall weight.

B. Untouched-neighbour-descendant guided policy

In this policy, seeds with more untouched neighbor descen-
dants will be prioritized to fuzz. Mutations from these seeds
have a higher probability to explore those untouched neighbor
descendants. We denote this policy as CollAFL-desc.

More specifically, we will use the number of untouched
neighbor descendants as the weight of a testcase T as follows:

Weight_Desc(T) =
∑

bb∈Path(T)
IsUntouched(<bb,bbi>)

NumDesc(bbi) (9)

where function IsUntouched is the same as the one used
in CollAFL-br policy, and function NumDesc returns the
number of descendant paths starting from the argument basic
block. Its formal definition is as follows:

NumDesc(bb) =
∑

<bb,bbi>∈EDGES

NumDesc(bbi) (10)

The weight here is not deterministic, since the function
IsUntouched is dynamic. However, the number of descendant
sub-paths is deterministic for each basic block. We could
compute this value using static analysis, without runtime
overheads. Similarly, we will iterate a basic block multiple
times if it is hit multiple times by the testcase.

C. Memory-access guided policy

In this policy, denoted as CollAFL-mem, seeds with more
memory access operations will be prioritized to fuzz.

More specifically, we use the number of memory access
operations as the weight of a testcase T as follows:

Weight_Mem(T) =
∑

bb∈Path(T)

NumMemInstr(bb) (11)

where the function NumMemInstr returns the number of
memory access operations in the argument basic block, which
can be computed statically. As a result, the weight computed
in this way is deterministic, unlike the previous two policies.
Similarly, we will iterate a basic block multiple times if it is
hit multiple times by the testcase.

D. Implementation Details

It is worth noting that, these policies could be applied to
any coverage-guided fuzzer, as long as the edge coverage and
block information could be provided.

We implement these three policies in AFL, by replacing
its default seed selection policy. As aforementioned, we could
get the number of memory access operations and the number
of descendant sub-paths for each basic block at compile time.

At runtime, after a seed testcase T is tested, we will
count its untouched neighbor branches and descendant sub-
paths, as well as memory access operations along the path
representatively. More specifically, we will first check the
testcase’s coverage bitmap, and get all edges covered by this
testcase and the hit counts. Since each edge has a different
hash, we could decode the start and end block of each edge
from its hash. Then for each block, we will get the list of its
untouched neighbor branches, based on the overall coverage
bitmap. Together with the number of descendant sub-paths and
memory access operations we have already collected, we could
then compute the weight for all three policies accordingly.

V. EVALUATION

To evaluate CollAFL, we conducted a set of experiments on
different applications, to show the impact of the hash collision
issue and our motivation, the code coverage and crash growth
improvements, the effectiveness of bug finding of our fuzzer
in real world applications, the randomness of fuzz testing, as
well as the comparison between fuzzers.

We chose 24 popular open source Linux applications
(in latest version when tested), including well-known tools
(e.g., nm, tcpdump, clamav), image processing libraries
(e.g., libtiff, libexiv2), audio and video processing
(e.g., libmpg123, libav), and document processing (e.g.,
vim, catdoc, libgxps) etc. They are chosen based on
following features: popularity in the community, development
activeness, and diversity of categories. Furthermore, we also
evaluated on the LAVA-M dataset [14], which has 4 applica-
tions instrumented with crafted vulnerabilities.

We evaluated four different settings of our fuzzer, in-
cluding CollAFL, CollAFL-br, CollAFL-desc and CollAFL-
mem, which have resolved hash collisions but applied different
seed selection policies, i.e., the default policy (used by AFL),
untouched-branch guided, untouched-descendant guided, and
memory-access guided respectively. We further compare our
fuzzer with original AFL, as well as AFL-fast [11] and
CollAFL-fast (i.e., AFLfast with our collision mitigation).

We evaluated these fuzzers on these 24 applications with
a same configuration, i.e., a virtual machine configured with
1 core of 2GHz Intel CPU and 1 GB RAM, running Ubuntu
15.10. We have also tested VMs with different memory sizes. It
showed that 1GB is enough for the comparison and larger VM
sizes do not improve these fuzzers’ performance. The detail
evaluation result is listed in Table VIII in Appendix B.

A. Impact of Hash Collision

We first evaluated the prevalence of hash collision in the
state-of-art edge coverage guided fuzzer AFL, demonstrating

TABLE I: Statistics of target applications, including the file
size, the number of instructions, basic blocks, and edges. In
the last column, it shows the collision ratio, demonstrating the
prevalence of edge hash collision.

Applications Size #ins. #BB #edges collision

LAVA(base64) 193KB 5570 822 1308 0.8%
LAVA(uniq) 208KB 5285 890 1407 0.92%

LAVA(md5sum) 234KB 7397 1013 1560 1.02%
LAVA(who) 1.52MB 84648 1831 3332 1.8%

catdoc 202KB 6448 841 1322 1.29%
libtasn1 540KB 12511 2163 3820 2.72%
cflow 688KB 24655 4286 7001 5.2%

libncurses 338KB 21486 4646 7883 5.57%
libtiff+tiffset 1.77MB 61119 8974 14826 10.4%
libtiff+tiff2ps 1.97MB 65932 9632 15927 10.84%
libtiff+tiff2pdf 2.1MB 71530 10507 17603 12.31%
libming+listswf 4.04MB 87148 11456 19154 13.61%

libdwarf 3MB 73921 11698 20260 13.7%
tcpdump 4.62MB 127082 18781 32656 21.2%

nm 8.72MB 218326 31611 53652 36.06%
bison 3.28Mb 219268 42856 55658 32.8%
nasm 4.4MB 226665 41691 57411 33.38%

libpspp 5MB 259501 41323 71335 38.9%
objdump 11.88MB 305620 43935 74313 40.17%
clamav 11.35MB 347156 46140 81069 42.48%

exiv2+libexiv2 4.75MB 283284 59650 91287 45.87%
libsass+sassc 32.8MB 593570 68538 106738 50.7%

vim 14.7MB 478402 83877 153689 61.4%
libav 76.7MB 1776730 158009 255212 74.85%

libtorrent 97.5MB 1228513 164325 260485 75.29%

the motivation of our work. Then we evaluated the effective-
ness of the trivial mitigation and our proposed solution.

1) Prevalence of Hash Collision: Table I shows the statis-
tics of target applications tested in our experiment, whose sizes
range from 100KB to 100MB. We can see that the edge hash
collision ratio is very high, proportional to the number of
edges. It is consistent with AFL’s evaluation. For example,
over 75% of edges collide with other edges in the application
libtorrent, while it has over 260K edges.

The reason is that, the bitmap is 64KB (65.5K bytes), and
thus at most 65.5K edges could be stored in it without conflicts.
The remaining 194.5K (=260K-65.5K) edges must collide with
other edges, no matter what hash algorithm is used. The more
edges an application has, the more collisions it may have.

2) Effectiveness of the Trivial Mitigation: As aforemen-
tioned, a trivial mitigation to the hash collision issue is
enlarging the bitmap. Figure 4 shows the effectiveness of this
mitigation, confirming that the collision ratio drops when the
bitmap size increases. For example, if we enlarge the bitmap
size from 64KB to 1MB, the collision ratio of libtorrent
drop from 75% to about 10%. However, the hash collision ratio
could not be reduced to 0, even if we use a very large bitmap,
due to the birthday attack and the randomness of edge hashes.

On the other hand, we also evaluated the side effects of this
mitigation, pointing out that this mitigation will greatly slow
down the execution speed of the fuzzer, as shown in Figure 5.
It also confirms AFL’s concern about the tradeoff of coverage
accuracy and performance. For example, the execution speed
of libtorrent drops off 30%, if we enlarge the bitmap size
from 64KB to 1MB. The reason is that, a larger bitmap will
take more time to update at runtime, and has a bad effect on
the cache.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

64KB 128KB 256KB 512KB 1M 2M 4M 8M 16M 32M

Co
lli
sio

n	
Ra

te

LAVA(uniq)

LAVA(md5sum)

LAVA(base64)

LAVA(who)

libtasn1

catdoc

libtiff+tiff2pdf

libtiff+tiff2ps

libtiff+tiffset

libming+listswf

binutils+objdump

binutils+nm

tcpdump

exiv2

vim

nasm

libncurses+captoinfo

clamav

libav+avconv

libtorrent

libpspp+pspp-convert

libsass+sassc

dwarfdump

bison

cflow

Bitmap Size

Fig. 4: Edge collision rate drops if enlarge bitmap size.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

64KB 128KB 256KB 512KB 1M 2M 4M 8M 16M 32M

Ex
ec
ut
e	
Sp

ee
d

LAVA(uniq)

LAVA(md5sum)

LAVA(base64)

LAVA(who)

Libasn1

Catdoc

Libtiff+tiff2pdf

Libtiff+tiff2ps

Libtiff+tiffset

Libming+listswf

Binutils+objdump

Binutils+nm

Tcpdump

Exiv2

Vim

Nasm

libncurses+captoinfo

Clamav

Libav+avconv

Libtorrent

Libpspp+pspp-convert

Libsass+sassc

Dwarfdump

Bison

Cflow

Bitmp size

Fig. 5: Execution speed drops too if enlarge bitmap size.

The execution speed is one factor to the success of fuzzers.
For example, a fork of AFL on Windows, i.e., WinAFL [8],
performs much worse than AFL due to the execution speed (as
well as some other restrictions). Moreover, many studies [11,
44] have shown that, the execution speed is crucial to fuzzers.
But readers should also be aware that there are other factors
to the success of fuzzers, in addition to speed.

So, simply enlarging the bitmap size could reduce the colli-
sion ratio (not to zero), but will slow down the execution speed,
and thus slow down the speed of code coverage exploring and
bug finding. As a result, this trivial mitigation is not a good
solution to the hash collision issue.

3) Effectiveness of CollAFL’s Mitigation: In order to
eliminate collisions for known edges we use three delicate
algorithms, i.e., Fsingle, Fmul and Fhash, to assign
hashes to edges depending on the type of edges’ end blocks.

Table II shows the statistics of our mitigation, including
the number of instructions instrumented by AFL, the delta of
instrumentations performed by CollAFL comparing to AFL,
the number of instrumentations made by CollAFL in three
types, and the hash collision ratio after mitigation.

TABLE II: Statistics of the collision mitigation by CollAFL.

bitmap AFL CollAFLApplications size #ins. delta Fmul Fsingle Fhash coll. ratio

LAVA(uniq) 64KB 7120 -2.56% 354 536 0 0
LAVA(md5sum) 64KB 8104 -1.32% 453 560 0 0
LAVA(base64) 64KB 6576 -3.07% 310 512 0 0

LAVA(who) 64KB 14648 -8.62% 284 1547 0 0

libtasn1 64KB 17304 -4% 708 1455 0 0
catdoc 64KB 6728 -3.67% 297 544 0 0

libtiff+tiff2pdf 64KB 84048 -2.9% 4033 6473 1 0
libtiff+tiff2ps 64KB 77040 -3.18% 3590 6040 2 0
libtiff+tiffset 64KB 71792 -2.34% 3648 5326 0 0

libming+listswf 64KB 91640 -1.67% 4961 6494 1 0

objdump 128KB 351416 -2.13% 18218 25709 8 0
64KB - - 16902 27033 0 11.8%

nm 64KB 252840 -1.61% 13772 17833 6 0
tcpdump 64KB 150216 -1.97% 7908 10869 4 0

exiv2 128KB 477192 -3.31% 21933 37716 1 0
64KB - - 16927 42723 0 28.21%

vim 256KB 670960 -2.95% 32039 51831 7 0
64KB - - 14129 69748 0 57.36%

nasm 64KB 333496 -5.83% 11130 30557 4 0
libncurses 64KB 37168 -2.93% 1779 2867 0 0

clamav 128KB 368912 -4.45% 14845 31269 26 0
64KB - - 17573 28567 0 19.16%

libav 256KB 1264072 -0.6% 75068 82915 26 0
64KB - - 10392 147617 0 74.32%

libtorrent 256KB 1314568 -2.91% 63012 101309 4 0
64KB - - 10756 153569 0 74.84%

libpspp 128KB 330528 -3.15% 15444 25872 7 0
64KB - - 16946 24377 0 8.13%

libsass 128KB 548296 -3% 26897 41640 1 0
64KB - - 15785 52753 0 38.6%

libdwarf 64KB 93568 -5.03% 3494 8202 2 0
bison 64KB 342848 +1.36% 23760 19096 0 0
cflow 64KB 34288 -1.44% 1896 2390 0 0

For all applications except bison, more blocks are instru-
mented with Fsingle rather than Fmul, and the numbers of
blocks instrumented with Fhash are close to 0. As shown in
Equation 6, the cost of Fsingle is much lower than Fmul.
As a result, the number of instrumentations made by CollAFL
is fewer than by AFL. The fourth column proves that CollAFL
instruments less instructions than AFL, for all applications
except Bison. On average, CollAFL instruments 2.93% less
instructions to applications than AFL.

It is worth noting that, CollAFL will enlarge the bitmap
to a proper size (i.e., larger than the number of edges) when
necessary. Results show that it successfully eliminate collisions
for all known edges. Otherwise, if the bitmap size is set to
64KB, our solution could only guarantee that the bitmap is
fully utilized and all 64K hashes are taken. As a result, at
most 64K edges’ hashes are distinct, and the remaining edges
must collide with others. As shown in Table II, if we set bitmap
size to 64KB, libtorrent’s collision ratio will be 74.84%.

So, CollAFL could resolve collisions for all known edges,
and also slightly improve the execution speed, both outper-
forming the trivial mitigation and the default AFL.

B. Code Coverage

Code coverage is one of the important factors to the suc-
cess of coverage-guided fuzzers. We thus evaluated different
fuzzers on 24 open source applications for 200 hours, and
compared their coverage performance (i.e., count of unique
paths explored).

As a comparison, we also evaluated AFLfast, which
demonstrated significant improvement to path discovery, and

TABLE III: Total number of paths explored in 200 hours.

Software AFL CollAFL -br -desc -mem AFL-fast CollAFL-fast
Cflow 1080 +3.43% +59.17% +41.11% +21.3% 1389 +7.27%
bison 1388 +9.51% +50.94% +75.36% +63.04% 1969 +6.81%

tiff2pdf 5332 +5.46% +11.7% +14.12% +10% 4979 +2.37%
listswf 4292 +1.34% +6.85% +3.36% +0.07% 4104 +0.79%

libnurses 1529 +19.56% +29.5% +19.62% +26.95% 1848 +0.6%
tiffset 1784 +0.73% +5.04% +10.82% -4.37% 1616 -1.86%
exiv2 1209 +36.56% +36.06% +6.45% +21.17% 201 +17.62%

libtasn1 465 +15.27% +59.14% +33.76% +53.33% 511 +4.31%
libsass 8790 -1.37% -0.61% +3.69% -1.66% 8771 -1.25%

nm 2389 +11.76% -17.79% -14.65% -16.83% 1493 +47.15%
libpspp 2258 +6.64% -11.43% -4.07% -0.27% 1772 +9.14%
Average 2774 +9.9% +20.78% +17.23% +15.7% 2604 +8.45%

a fork CollAFL-fast that applies CollAFL’s hash collision
mitigation solution on AFLfast. Due to the space limit, we
only show the results on 11 open source applications here. In
Appendix F, we presented the results on the LAVA-M dataset.

1) Total Coverage Improvement: As aforementioned, our
hash collision mitigation could enable paths visible to fuzzers,
and our seed selection policies could help explore untouched
paths. So, CollAFL is very likely to improve the code coverage.

Table III shows the total number of paths in 11 applications
explored by different fuzzers within 200 hours. Comparing
with AFL, CollAFL (with default seed selection policy) on
average found 9.9% more paths. CollAFL with the mem,
desc, br policy on average found 15.7%, 17.23%, and
20.78% more paths respectively. Comparing with AFLfast,
CollAFL-fast (with default seed selection policy) on average
found 8.45% more paths.

It proves that, CollAFL (with default seed selection policy)
outperforms AFL and AFLfast in terms of path discovery.
Together with the three proposed seed selection policies,
CollAFL could find even more paths. In other words, the
proposed hash collision mitigation solution and seed selection
policies could help improve the code coverage.

To be clear, we use the number of seeds in the seed pool
to count the code coverage here. We also tried to use the
coverage bitmap to count the code coverage, and showed the
code coverage improvement in Table IX in the Appendix C.
We could also draw a similar conclusion from this evaluation.

2) Coverage Growth over Time: Figure 7 in Appendix
shows the growth of code coverage of different fuzzers on
11 open source applications within 200 hours.

From the growth trend, we can see that: (1) The code
coverage of CollAFL and CollAFL-fast grows faster than
AFL and AFL-fast respectively, showing that the collision
mitigation solution we applied in CollAFL is effective. (2) The
code coverage of CollAFL-br grows faster than other CollAFL
settings, showing that the br seed selection policy is most
effective. (3) All fuzzers usually could find a lot of paths at
the beginning, and then get stuck at some time.

Moreover, we found that, AFLfast does not always outper-
form AFL in path discovery. It usually found more paths at
start (e.g., first 24 hours), but then got caught up by AFL. It is
worth to evaluate the effectiveness and efficiency of fuzzers
in a long time period rather than 24 hours.

TABLE IV: Vulnerabilities detected by CollAFL* within 200 hours, including versions of target applications (latest at the time
of testing), unknown and known vulnerabilities, vulnerabilities found by AFL and CollAFL* (with default, -br, -desc or -mem
policy), and unknown vulnerabilities that are confirmed by CVE and could cause ACE (arbitrary code execution).

uniq vulnerabilities CollAFL unknown vulnerabilitiesApplications version crashes unknown known AFL default -br -desc -mem CVE ACE
libtiff 4.0.8 1569 10 3 1 7 10 8 6 7 2

libtasn1 4.12 1 1 0 0 0 0 1 0 1 0
libming 0.4.8 1303 2 4 2 2 3 4 4 2 0

libncurses 6.0 526 15 0 3 5 13 10 7 11 2
libexiv2 0.26 222 14 0 5 9 14 14 9 13 0
libsass 3.5.0 155 10 2 4 7 12 12 9 9 0
libpspp 0.10.5 412 10 2 4 5 10 10 12 6 0
bison 3.0.4 212 3 2 1 2 5 5 2 0 0
cflow 1.5 298 7 2 4 5 7 8 6 0 0

binutils 2.28 397 4 4 4 6 8 8 6 2 1
libav 12.1 239 2 0 1 1 2 2 1 2 0

tcpdump 4.9.0 10 3 0 1 2 2 3 2 2 0
clamav 0.99.2 12 1 0 0 1 1 1 1 1 0

libdwarf 20170416 14 1 0 1 1 1 1 0 1 0
libtorrent 1.1.3 177 1 0 0 1 1 1 1 1 0

nasm 2.14 1619 17 0 5 13 17 17 12 14 2
vim 8.0.679 28 3 0 1 2 3 3 2 1 1

catdoc 0.9.5 16 3 0 2 3 3 3 2 1 1
libgxps 0.2.5 32 1 0 1 1 1 1 1 1 0

Libmpg123 1.25.0 11 1 0 0 0 1 1 1 1 0
Libraw 0.18.2 14 1 0 0 0 1 1 0 1 0
Liblouis 3.2.0 38 10 0 4 5 8 7 6 7 0

Graphicmagick 1.3.26 88 4 0 2 3 4 4 3 2 0
jasper 2.0.12 122 10 4 5 7 14 14 6 9 0
Total - 7501 134 23 51 88 141 139 99 95 9

Fraction of total vul. - - 85% 15% 32% 56% 90% 89% 63% 61% 4%

0%

100%

200%

300%

400%

500%

600%

700%

cfl
ow

bis
on

tif
f2p
df

lis
tsw
f

lib
nu
rse
s
tif
fse
t
ex
iv2

lib
ta
sn
1

lib
sa
ss nm

lib
ps
pp

AFL CollAFL CollAFL-br CollAFL-desc

CollAFL-mem AFL-fast CollAFL-fast average

Fig. 6: Crashes found by fuzzers, comparing to average crash count.

C. Unique Crashes

In addition to code coverage, another important factor to
fuzzers is the number of unique crashes found. Some crashes
may be caused by a same root cause, and some are even not
security vulnerabilities. But in general, the more crashes we
found, there is a good probability that more vulnerabilities
could be identified. Readers should be aware that fuzzers may
find fewer vulnerabilities even if it could find more crashes,
due to the randomness of fuzz testing.

In the same experiment shown in previous section, i.e.,
evaluating CollAFL, AFL and AFLfast on 24 open source
applications (only 11 of them shown here) for 200 hours, we
also tracked unique crashes found by different fuzzers.

1) Total Crashes Improvement: As shown in previous sec-
tion, CollAFL could discover more paths than AFL. Thus it is
likely that CollAFL could find more unique crashes.

Figure 6 shows the unique crashes (directly reported by

AFL) in 11 applications found by different fuzzers within
200 hours. For each application, we set the average number
of crashes found by all fuzzers as baseline (i.e., 100%), and
present the ratio of crashes found by each fuzzer.

It shows that, CollAFL (with default seed selection policy)
outperforms AFL and AFLfast in terms of finding unique
crashes. Together with the three proposed seed selection
policies, CollAFL could find even more crashes. In other
words, the proposed hash collision mitigation solution and seed
selection policies could help fuzzers find more crashes.

2) Crash Growth over Time: Figure 8 in Appendix shows
the growth of crashes found by different fuzzers in 11 open
source applications within 200 hours.

CollAFL outperforms AFL and AFLfast for almost all
applications. For example, in the nm application, only CollAFL
found one crash in 200 hours. CollAFL-fast outperforms
AFLfast for all applications. For example, for the application
listswf, AFLfast found more unique crashes than CollAFL-
fast at first, but was surpassed at end. Again, it shows that the
collision mitigation helps fuzzers find more crashes.

Moreover, CollAFL-br shows a strong growth momentum
on finding crashes in all applications except libtasn1 and
nm. CollAFL-desc and CollAFL-mem also shows a strong
growth momentum on finding crashes . In summary, all these
three proposed policies could help fuzzers find more crashes,
and the br and desc are the best.

Given the crashes found during fuzzing, we could further
identify vulnerabilities in target applications. As discussed in
Section V-D0a, we used afl-collect and AddressSanitizer
to help de-duplicate and triage crashes. Then we manually
analyzed the remaining crashes and confirmed vulnerabilities.

TABLE V: Average RSD of fuzzers among 20 trials in path discovery and crash findings.

AFL CollAFL -br -desc -memApplications Path Crashes Path Crashes Path Crashes Path Crashes Path Crashes
Libtasn1 1.36% 0% 1.5% 0% 2.91% 0% 0.66% 0% 1.86% 0%
Catdoc 3.1% 0% 2.47% 0% 1.97% 0% 3.71% 0% 2.88% 0%
Cflow 2.06% 8.95% 1.91% 10.5% 2.2% 12.4% 2.4% 9.6% 3.31% 12.4%
Bison 6.11% 14.82% 5.12% 20.23% 4.92% 17.92% 6.01% 15.89% 4.43% 18.92%

Tiff2pdf 2.09% 4.21% 2.22% 3.89% 2.6% 10.23% 2.6% 18.21% 4.33% 0%
Nm 7.21% 0% 5.5% 10.23% 6.1% 12.14% 5.96% 0% 5.96% 0%

libncurses 4.7% 24.7% 4.6% 46.1% 4.67% 35.8% 5.1% 43.4% 5.29% 31.9%
Libming 5.27% 12.24% 2.89% 5.2% 3.57% 8.32% 3.99% 7.47% 4.52% 3.69%

Exiv2 6.52% 20.33% 10.2% 8.76% 8.77% 9.13% 5.28% 18.25% 6.78% 13.69%
Libsass 5.02% 23.36% 5.48% 22.72% 5.13% 10.98% 3.52% 26.86% 3.91% 25.98%
Libpspp 2.34% 14.56% 1.99% 20.84% 3.03% 19.1% 3.7% 17.71% 3.1% 23.05%
Tiffset 1.49% 4.76% 2.66% 3.01% 1.57% 5.5% 3.08% 4.64% 3.3% 2.92%

TABLE VI: Deviation of fuzzers among 20 trials in bug findings. Nine specific vulnerabilities are tracked, including how many
trials found them, and the shortest and longest time (in form of hour:minute) taken by those trials to find this vulnerability.

libncurses Libming Exiv2 libpsppFuzzer Bug-5 Bug-6 Bug-7 Bug-11 Bug-12 Bug-25 Bug-26 Bug-42 Bug-43
AFL 0 (-,-) 19 (01:18, 28:29) 0 (-,-) 0 (-,-) 8 (41:19, 56:11) 0 (-,-) 0(-,-) 1 (39:45, 39:45) 0 (-,-)

AFL-pc 20 (09:32, 31:08) 18 (02:07, 08:02) 0 (-,-) 6 (34:34, 55:33) 2 (56:43, 57:51) 0 (-,-) 0(-,-) 0 (-,-) 0 (-,-)
CollAFL 20 (08:12, 19:18) 20 (00:59, 07:29) 0 (-,-) 20 (00:44, 02:56) 6 (12:23, 35:21) 0 (-,-) 0(-,-) 18 (23:01, 48:22) 0 (-,-)

-br 20 (14:18, 28:16) 20 (04:09, 12:21) 8 (45:45, 57:26) 20 (15:12, 32:15) 6 (34:02, 57:43) 8 (38:02, 56:12) 17 (21:12, 57:56) 9 (35:12, 56:21) 1 (49:44, 49:44)
-desc 20 (10:01, 18:06) 18 (06:12, 57:21) 6 (44:41, 57:33) 20 (13:12, 34:01) 7 (37:01, 57:44) 12 (28:02, 59:32) 16 (23:17, 57:05) 10 (29:18, 47:21) 0 (-,-)
-mem 20 (06:01, 11:06) 20 (00:44, 02:21) 0 (-,-) 20 (14:18, 22:21) 2 (46:02, 57:01) 0 (-,-) 6 (28:21, 46:51) 12 (28:02, 45:12) 0 (-,-)

D. Vulnerabilities

As aforementioned, we evaluated CollAFL on 24 appli-
cations. Table IV shows the detailed results of a 200 hours
trial. In total, we found over 7500 unique crashes in these
applications, and further identified 157 vulnerabilities.

a) Crash Triage Analysis: We used several tools to help
triage crashes and filter vulnerabilities. First, we utilized the
open source tool afl-collect [7] to de-duplicate crashes. It
internally uses the GDB plugin exploitable [6] to compute
the hash of each crash’s backtrace, and then de-duplicate
crashes based on the hashes. Furthermore, we recompile the
target applications with AddressSanitizer, and tested them with
the deduplicated crash samples. AddressSanitizer could then
report the root causes of these crashes, and help us remove
duplicated ones. Finally, we manually analyze the remaining
crashes, and confirmed 157 unique vulnerabilities.

It is worth noting that, we only utilize AddressSanitizer
to triage crashes, but do not use it in CollAFL, due to its
performance overhead. So CollAFL has a good execution
speed, but may miss potential vulnerabilities that do not crash.
We will test CollAFL with AddressSanitizer in the future work.

We have submitted proof-of-concept samples of these 157
vulnerabilities to upstream vendors. It turned out, 23 of them
are known to vendors (i.e., found by other researchers too), but
have not been fixed in any release yet (i.e., unknown to us).
The remaining 134 vulnerabilities are unknown to vendors, and
95 of them are acknowledged by CVE, as shown in Table X
in Appendix H. Furthermore, 9 of them could cause ACE
(arbitrary code execution). Non-ACE vulnerabilities could also
cause serious consequences. For example, vulnerabilities in
tcpdump and clamav could be utilized for DoS attacks,
to disable victims’ defenses.

During this trial, AFL only found 51 vulnerabilities
(i.e., 32% of all detected vulnerabilities). But CollAFL with
default, mem, desc, br seed selection policy found

88, 99, 139 and 141 (i.e., 90% of all) vulnerabilities respec-
tively, and cover all vulnerabilities found by AFL. It shows
that CollAFL (especially with the br policy) is much better
than AFL in vulnerability discovery.

E. Randomness Evaluation

As aforementioned, we figured out some fuzzers may
outperform others at start, but may lose the long-run fuzzing.
A long-run evaluation could also reduce the effects of random-
ness, e.g., the random mutation algorithms used by fuzzers .
So, in the previous sections, we run a 200 hours trial to eval-
uate fuzzers’ code coverage, crash findings, and vulnerability
discovery. But randomness is still a concern. We thus further
evaluated the deviations of fuzzers’ testing results.

a) Experiment Setup: However, the resource require-
ments is very high to do a long-run evaluation. In the 200-
hour experiment we conducted, we tested 7 fuzzer settings on
24 applications. It costs about 7 ∗ 24 ∗ 200 = 33, 600 core
hours, i.e., 1400 core days, just for one trial. So, we are not
able to conduct multiple trials. For example, to evaluate the
randomness, usually tens of trials are required.

Instead, we conducted 20 smaller trials. Each trial evaluated
fuzzers on 12 applications for 60 hours. We evaluated in total
8 fuzzer settings on these applications. More of these settings
will be discussed in the next section. It costs about 20 ∗ 8 ∗
12 ∗ 60 = 115, 200 core hours, i.e., 4800 core days.

b) Deviation in Path Discovery and Crash Findings:
For each fuzzer and target application, we first sampled every
20 minute the count of path discovered so far in each trial.
Then we computed the relative standard deviation (RSD)6

among 20 trials at each sampling point. Finally, we computed
the arithmetic average of RSDs of all sampling points. Table V
shows the average RSD of each fuzzer among 20 trials on each
application in path discovery.

6https://en.wikipedia.org/wiki/Coefficient_of_variation

TABLE VII: Average bugs found by fuzzers among 20 trials.
Values in the parentheses are average bugs found in 60 and 24
hours respectively.

Applications AFL AFL-pc AFL-laf CollAFL -br -br-laf

LAVA(Base64) (0.2, 0) (0.1, 0) (34.2, 32.1) (0.8, 0.1) (2.1, 1.8) (39.3, 38)
LAVA (Md5sum) (0, 0) (0, 0) (35.8, 31.1) (0.4, 0) (3.6, 0) (48.8, 35.5)

LAVA(uniq) (0.6, 0.2) (1.2, 0) (25.6, 23.3) (1.7, 1.1) (3.7, 0.9) (27.7, 23.2)
LAVA(who) (2.6, 1.2) (2.1, 1.1) (43.1, 35.1) (4.1, 1.5) (5.3, 2) (47.7, 36.1)

Total (3.4, 1.4) (3.4, 1.1) (138.7, 121.6) (7, 2.7) (14.7, 4.7) (163.5, 132.8)

Cflow (0.7, 0) (1.1, 0.1) (0.4, 0) (1.8, 0.1) (2.4, 0.2) (2.1, 0)
bison (0.9, 0.1) (1, 0.5) (0.8, 0) (1.6, 0.5) (1.8, 0.8) (1.5, 0)

tiff2pdf (0.1, 0) (0, 0) (0, 0) (0.8, 0) (1.3, 0) (1.1, 0)
listswf (1.8, 1) (1.9, 0.2) (1.1, 0) (1.8, 1.2) (2.1, 0.8) (2.1, 0.4)

libnurses (1.1, 0.9) (1.5, 0.8) (1.1, 0.8) (1.6, 1.1) (2.3, 1.9) (2, 1.5)
tiffset (1.9, 1.1) (1.6, 1) (1.8, 1.1) (2.4, 2) (2.8, 2) (2.4, 1.2)
exiv2 (1.9, 0) (2.1, 0.8) (1.3, 0) (2.5, 0.2) (4.1, 1.4) (3.1, 0.3)

libtasn1 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
libsass (1.7, 0) (1.2, 0) (1.1, 0) (2.2, 0) (3.4, 0) (1.4, 0)

Nm (0, 0) (0, 0) (0, 0) (0.1, 0) (0.3, 0) (0, 0)
pspp (1.2, 0.5) (1, 0.6) (1.1, 0) (1.4, 0.7) (2.3, 0.6) (1.3, 0.1)
Total (11.3, 3.6) (11.4, 3.9) (8.7, 1.9) (16.2, 5.8) (22.8, 7.7) (17, 3.5)

It shows that, fuzzers’ randomness in terms of path discov-
ery and crash finding is reasonable low. In general, fuzzers’
RSDs are usually smaller than 4% in path discovery, and
smaller than 25% in crash findings. For example, in a bad
case, for the application Exi2, AFL and CollAFL has a RSD
of 6.52% and 10.2% respectively, in terms of path discovery.
It is straightforward that crash finding has more randomness
than path findings, because crashes could only be triggered
with a probability if the vulnerable path is explored.

Moreover, the randomness in fuzzers are relatively low
comparing to the improvements made by CollAFL. Table III
shows that CollAFL could find 36.56% more paths than AFL
for the application Exiv2. This improvement ratio is more than
double of sum of AFL and CollAFL’s RSDs. So, even in the
worst case, CollAFL could outperform AFL in terms of path
discovery. Figure 6 shows that in the worst case, CollAFL
could outperform AFL in terms of crash discovery.

c) Deviation in Vulnerability Finding: As we see,
fuzzers show more deviations in crash finding than path
discovery. Similarly, we can infer that fuzzers have more
deviations in finding vulnerabilities than crash finding.

Due to the scarcity of vulnerabilities, we did not use the
sampling method in previous section to compute the RSD.
Instead, we counted how many trials could find a specific
vulnerability and the time used by those trials to find this vul-
nerability. Table VI shows the statistics results. For example,
CollAFL-desc found the Bug-6 in 18 of 20 trials. Among
these 18 trials, the fastest one spends only 6 hours to find this
bug, while the slowest one spends over 57 hours to find it.

It shows that, for each target vulnerability, CollAFL could
find it in more trials than AFL. For example, CollAFL found
the Bug-6 in all 20 trials, while AFL only found it in 19 trials.
Moreover, CollAFL could find target vulnerability faster than
AFL in general. For example, CollAFL used 59 seconds to
find the Bug-6 in the fastest trial, while AFL used 78 seconds.

F. Comparison between Fuzzers

a) Fuzzer Settings: We tried to compare CollAFL with
other AFL family fuzzers. In order to evaluate the effectiveness

of our solutions, i.e., the hash mitigation as well as seed
selection policies, we evaluated two extra variations of AFL.

First, we evaluated a variation of AFL denoted as AFL-pc,
which uses the trace-pc-guard instrumentation method
provided by Clang to track block coverage, rather than edge
coverage. Second, we adopted another instrumentation solution
provided by laf-intel [1], which divides long integer and
string comparison operations into smaller ones, and splits
switch statements to a group of if-else statements. We then
combine laf-intel with AFL and CollAFL respectively,
denoted as AFL-laf and CollAFL-br-laf.

b) Vulnerability Discovery: Table VII shows the av-
erage vulnerabilities found by fuzzers among 20 trials. As
aforementioned, in each trial, we evaluated 8 fuzzing settings
on 12 applications (and the LAVA-M dataset) for 60 hours.

First, by comparing the results in 60 hours and 24 hours, we
can see that fuzzers could still find many new vulnerabilities
after 24 hours.

Second, AFL-laf significantly outperforms AFL, AFL-pc
and CollAFL in LAVA-M dataset, but underperforms them in
real world applications, showing that the LAVA-M benchmark
had many long string/integer comparisons hindering traditional
fuzzers, but it is not the case in real world applications.

Third, CollAFL outperforms AFL and AFL-pc, but un-
derperforms AFL-laf in LAVA-M, showing that this dataset
focuses much on long string comparisons.

Moreover, CollAFL-br-laf outperforms AFL-laf,
showing that the seed selection policy is effective. However,
CollAFL-br-laf outperforms CollAFL-br in LAVA-M,
but underperforms it in real world applications, again showing
the LAVA-M dataset is specially crafted.

VI. CONCLUSION

In this paper, we studied the negative impact of coverage
inaccuracy in coverage-guided fuzzers. We proposed a cov-
erage sensitive fuzzing solution CollAFL, which resolves the
hash collision issue in the state-of-art fuzzer AFL, enabling
more accurate edge coverage information while still preserving
low instrumentation overhead. Based on the accurate coverage
information, we proposed three new seed selection policies to
drive the fuzzer directly towards non-explored paths. Experi-
ments showed that this solution is both effective and efficient,
in terms of path discovery, crash finding and vulnerability
discovery. We have found 157 new security bugs in 24 real
world applications, and 95 of them are confirmed by CVE.

ACKNOWLEDGEMENT

We would like to thank our shepherd Matthew Hicks,
and the anonymous reviewers for their insightful comments.
We would also thank our colleague Prof. Dong Wu at State
Key Laboratory of Mathematical Engineering and Advanced
Computing for his valuable comments and suggestions to the
paper. This research was supported in part by the National
Natural Science Foundation of China (Grant No. 61772308
61472209, and U1736209), and Young Elite Scientists Spon-
sorship Program by CAST (Grant No. 2016QNRC001), and
award from Tsinghua Information Science And Technology
National Laboratory.

REFERENCES

[1] “Circumventing Fuzzing Roadblocks with Compiler Transformations,” https :
/ / lafintel .wordpress . com/2016 /08 /15 /circumventing- fuzzing- roadblocks - with -
compiler-transformations/.

[2] “Dataflowsanitizer,” https://clang.llvm.org/docs/DataFlowSanitizerDesign.html.
[3] “Oss-fuzz: Five months later, and rewarding projects,” https://testing.googleblog.

com/2017/05/oss-fuzz-five-months-later-and.html.
[4] “Sanitizercoverage: Clang documentation,” https : / / clang . llvm . org / docs /

SanitizerCoverage.html.
[5] “syzkaller - kernel fuzzer,” https://github.com/google/syzkaller.
[6] “The ’exploitable’ GDB plugin,” https://github.com/jfoote/exploitable.
[7] “Utilities for automated crash sample processing/analysis,” https://github.com/rc0r/

afl-utils.
[8] “WinAFL: A fork of AFL for fuzzing Windows binaries,” https://github.com/

ivanfratric/winafl.
[9] P. Biswas, A. Di Federico, S. A. Carr, P. Rajasekaran, S. Volckaert, Y. Na, M. Franz,

and M. Payer, “Venerable variadic vulnerabilities vanquished,” 2017.
[10] M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox

fuzzing,” in CCS, 2017.
[11] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing as

markov chain,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 1032–1043.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-Oriented Programming without Returns,” in Conf. on Com-
puter and Communication Security, 2010.

[13] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, C. K. Shuang Hao, and G. Vigna,
“Difuze: Interface aware fuzzing for kernel drivers,” in Conf. on Computer and
Communication Security, 2017.

[14] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan, “Lava: Large-scale automated vulnerability addition,” in Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 110–121.

[15] M. Eddington, “Peach fuzzing platform,” Peach Fuzzer, p. 34, 2011.
[16] M. Girault, R. Cohen, and M. Campana, “A generalized birthday attack,” in

Advances in Cryptology. Springer, 1988, pp. 129–156.
[17] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox fuzzing,” in

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’08. New York, NY, USA: ACM, 2008,
pp. 206–215. [Online]. Available: http://doi.acm.org/10.1145/1375581.1375607

[18] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning
for input fuzzing,” CoRR, vol. abs/1701.07232, 2017. [Online]. Available:
http://arxiv.org/abs/1701.07232

[19] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in Conf. on Computer
and Communication Security, 2017.

[20] A. D. Householder and J. M. Foote, “Probability-based parameter selection for
black-box fuzz testing,” CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-
WARE ENGINEERING INST, Tech. Rep., 2012.

[21] M. j00ru Jurczyk, “Effective file format fuzzing,” BlackHat Europe 2016.
[22] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification: Stopping an

emerging attack vector.” in USENIX Security Symposium, 2015, pp. 81–96.
[23] Z. Lin, X. Zhang, and D. Xu, “Convicting exploitable software vulnerabilities: An

efficient input provenance based approach,” in 2008 IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC (DSN), 2008.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40, no. 6. ACM, 2005,
pp. 190–200.

[25] M. Namolaru, “Devirtualization in gcc,” in Proceedings of the GCC Developers
Summit, 2006, pp. 125–133.

[26] N. Nichols, M. Raugas, R. Jasper, and N. Hilliard, “Faster fuzzing: Reinitialization
with deep neural models,” CoRR, vol. abs/1711.02807, 2017. [Online]. Available:
http://arxiv.org/abs/1711.02807

[27] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities,” in Conf. on
Computer and Communication Security, 2017.

[28] M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural byte
sieve for fuzzing,” CoRR, vol. abs/1711.04596, 2017. [Online]. Available:
http://arxiv.org/abs/1711.04596

[29] S. Rawat, V. Jain, A. Kumar, and H. Bos, “VUzzer: Application-aware Evolutionary
Fuzzing,” in Network and Distributed System Security Symposium, 2017.

[30] A. Samsonov and K. Serebryany, “New features in addresssanitizer,” 2013.
[31] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kafl:

Hardware-assisted feedback fuzzing for OS kernels,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Association,
2017, pp. 167–182. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/schumilo

[32] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A
fast address sanity checker,” in the 2012 USENIX Annual Technical Conference,
2012, pp. 309–318.

[33] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detection in prac-
tice,” in Proceedings of the Workshop on Binary Instrumentation and Applications.
ACM, 2009, pp. 62–71.

[34] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,” in Cyber-
security Development (SecDev), IEEE. IEEE, 2016, pp. 157–157.

[35] ——, “Oss-fuzz - google’s continuous fuzzing service for open source software,”
2017.

[36] F. J. Serna, “The info leak era on software exploitation,” in Blackhat USA, 2012.
[37] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-libc

without Function Calls (on the x86),” in Conf. on Computer and Communication
Security, 2007.

[38] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings of the
11th ACM Conference on Computer and Communications Security, ser. CCS
’04. New York, NY, USA: ACM, 2004, pp. 298–307. [Online]. Available:
http://doi.acm.org/10.1145/1030083.1030124

[39] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detector of uninitial-
ized memory use in c++,” in Code Generation and Optimization (CGO), 2015
IEEE/ACM International Symposium on. IEEE, 2015, pp. 46–55.

[40] R. Swiecki, “Honggfuzz,” Available online a t: http://code. google.
com/p/honggfuzz, 2016.

[41] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed generation for
fuzzing,” 2017.

[42] S. Wang, J. chang Nam, and L. Tan, “Qtep: Qulity-aware test case prioritization,”
in ESEC/FSE 2017 Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, 2017.

[43] T. Wang, T. Wei, G. Gu, and W. Zou, “Taintscope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection,” 2010.

[44] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating
primitives to improve fuzzing performance,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: ACM, 2017, pp. 2313–2328. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134046

[45] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/.

APPENDIX

A. Algorithms for determining parameters for Fhash

Algorithm 3 shows the workflow of Fhash, i.e., how to
build the hash table for unsolvable multi-precedent blocks. In
short, it picks random unused hashes for each edge ending with
unsolvable block, and store it in the hash map HashMap. It
also returns the set of unused hashes FreeHashes.

Algorithm 3 CalcFhash

Input: Hashes, Unsol, Keys[], Preds[]
Output: HashMap, FreeHashes

1: HashMap=∅, FreeHashes= BITMAP_HASHES - Hashes

2: for BB in Unsol do
3: cur=Keys[BB]
4: for p ∈ Preds[BB] do
5: HashMap(cur, Keys[p]) = FreeHashes.RandomPop()
6: end for// iterate precedents
7: end for// iterate BB
8: return (HashMap, FreeHashes)

B. Effect of Memory Size on Fuzzing

We have tested fuzzers with different memory sizes. Ta-
ble VIII shows the number of inputs processed by AFL per
hour, in different configurations of bitmap size and memory
size. It shows that, 1GB memory in general is enough for
fuzz testing (unless target applications require much runtime
memory).

https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://testing.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://clang.llvm.org/docs/SanitizerCoverage.html
https://github.com/google/syzkaller
https://github.com/jfoote/exploitable
https://github.com/rc0r/afl-utils
https://github.com/rc0r/afl-utils
https://github.com/ivanfratric/winafl
https://github.com/ivanfratric/winafl
http://doi.acm.org/10.1145/1375581.1375607
http://arxiv.org/abs/1701.07232
http://arxiv.org/abs/1711.02807
http://arxiv.org/abs/1711.04596
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
http://doi.acm.org/10.1145/1030083.1030124
http://doi.acm.org/10.1145/3133956.3134046
http://lcamtuf.coredump.cx/afl/

Fig. 7: Number of paths explored over time in real world applications in 200 hours.

TABLE VIII: Inputs processed by AFL per hour, given differ-
ent bitmap size and memory size, running for 48 hours.

AFL Bitmap Size 64KB 256KB
VM Memory Size 1GB 2GB 4GB 1GB 2GB 4GB

LAVA(uniq) 1,270K 1,269K 1,291K 1,099K 1,088K 1,121K
LAVA(md5sum) 778K 779K 779K 703K 712K 688K
LAVA(base64) 1,521K 1,493K 1,544K 1,103K 1,084K 1,119K

LAVA(who) 1,201K 1,205K 1,204K 1,011K 1,021K 1,034K
libtasn1 2,234K 2,146K 2,189K 1,389K 1,328K 1,361K
tiffset 1,337K 1,346K 1,365K 1,072K 1,028K 1,032K
listswf 1,329K 1,347K 1,352K 899K 933K 942K
tiff2pdf 934K 932K 923K 848K 824K 839K

C. Total Coverage Improvement in Real World Applications

As discussed in Section V-B1, we used the count of seeds
in the pool as the count of paths discovered. Here, we use
the coverage bitmap to count the code coverage. Table IX
shows the total number of paths in 11 applications explored
by different fuzzers within 200 hours. From this evaluation,
we could also draw a similar conclusion as Section V-B1, i.e.,
CollAFL (with default seed selection policy) outperforms AFL
and AFLfast in terms of path discovery. and CollAFL could do
better if armed with the three proposed seed selection policies.

D. Coverage Growth in Real World Applications

As aforementioned, we evaluated CollAFL on 24 real world
applications for 200 hours. Figure 7 shows the code coverage

TABLE IX: Total number of paths explored in real world
applications in 200 hours, by recovering counters from the
coverage bitmap.

Software AFL CollAFL -br -desc -mem AFL-fast CollAFL-fast
Cflow 1855 +0.38% +5.66% +1.4% +0.7% 1874 +0.69%
bison 2012 +8.8% +55.82% +45.63% +35.34% 2903 +0.69%

tiff2pdf 7327 +1.26% +1.08% +5.19% +2.14% 6770 +3.57%
listswf 3379 +0.15% +0.53% +0.18% 0% 3369 +0.21%

Libnurses 1986 +4.93% +6.45% +4.28% +5.29% 1996 +0.8%
tiffset 3925 +0.99% +1.83% 4.51% -3.67% 3663 -1.56%
exiv2 7261 +1.8% +2.16% +1.09% +1.45% 1599 +7.94%

libtasn1 741 +10.66% +11.47% +11.47% +10.66% 747 +9.64%
libsass 23893 -0.06% +1.54% +1.32% +0.44% 23125 -0.26%

Nm 3133 +5.01% -1.02% -2.11% -0.7% 2667 +17.21%
libpspp 1055 +2.46% 0% +1.23% -3.7% 1011 +1.38%
Average - +3.31% +7.77% +6.74% +4.36% - +3.66%

growth over time for 11 real world applications. Comparing to
the LAVA-M dataset in which applications have few paths,
these real world applications have much more paths. The
differences between our fuzzers and the original AFL fuzzer
are also more significant. This group of experiments also
demonstrate similar results as the LAVA-M dataset (presented
in the following sections).

First, when considering the effectiveness of collision mit-
igation, the code coverage of CollAFL and CollAFL-fast
grow faster than AFL and AFL-fast respectively, showing that

Fig. 8: Number of unique crashes found over time in real world applications in 200 hours.

the collision mitigation solution we applied in CollAFL is
effective. For example, as shown in Table III, CollAFL could
find 9.9% more paths than original AFL, while CollAFL-fast
could find 8.45% more paths than AFLfast.

Second, the code coverage of CollAFL-br and CollAFL-
desc grow faster than other settings, showing that the
untouched-branch guided and untouched-descendant guided
seed selection policies are better than others. For example, as
shown in Table III, CollAFL-br and CollAFL-desc could find
much more paths than CollAFL.

Moreover, we found that, at the beginning all fuzzers
could find a lot of paths very soon, and the differences
between fuzzers are not distinct. However, as time goes on,
the differences between them are increasing rapidly. For most
subjects, CollAFL-br and CollAFL-desc outperform the others.

It shows that a short-run trial could not fairly differentiate
fuzzers, due to the randomness in fuzzing. This is also a reason
that we conducted a 200-hour long experiment.

E. Crashes Growth in Real World Applications

During the 200 hours trial, we also tracked the number
of crashes found by fuzzers. Figure 8 shows the number of
unique crashes found over time in the real world applications
in 200 hours.

CollAFL outperforms AFL for all 11 applications, and
outperforms AFLfast for most applications. Especially, for the
nm application, only CollAFL has found one crash. CollAFL-
fast outperforms AFLfast for all 11 applications too. For
example, in the application listswf, AFLfast found more
unique crashes than CollAFL-fast at first, and was surpassed
at end. Again, it shows that the collision mitigation solution
is effective, and could help finding crashes.

Moreover, CollAFL-br shows a strong growth momentum
on finding crashes in all applications except libtasn1 and
nm. CollAFL-desc also shows a strong growth momentum
on finding crashes in all applications except exiv2 and
libncurses. CollAFL-mem shows a strong growth mo-
mentum on finding crashes in libtiff, libpspp and
libsass. All these three policies could sometimes discover
some unique crashes that could not be found by others in a long
time. For example, CollAFL-desc found the only one unique
crash in libtasn1.

F. Coverage Growth in LAVA-M dataset

We also evaluated CollAFL on the LAVA-M dataset for
200 hours. Figure 9 shows the code coverage growth over time.
In general, the code coverage of CollAFL and CollAFL-fast
grows faster than AFL and AFL-fast respectively. It proves
that the collision mitigation solution in CollAFL is effective.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180

LAVA(base64)
N
um

be
r	
of
	S
ta
te
s	i
n
Q
ue
ue

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

LAVA(uniq)

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

AFL

collAFL

collAFL-br

collAFL-desc

collAFL-mem

AFL-fast

collAFL-fast

LAVA(who)

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

LAVA(md5sum)

Fig. 9: Number of paths explored over time in LAVA-M dataset in 200 hours.

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140 160 180 200

Nu
m
be

r	o
f	U

ni
q	
Cr
as
he

s

LAVA (base64)

0

10

20

30

0 20 40 60 80 100 120 140 160 180

LAVA (md5sum)

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180

LAVA (uniq)

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

LAVA (who)

AFL

CollAFL

CollAFL-br

CollAFL-desc

CollAFL-mem

AFL-fast

CollAFL-fast

Fig. 10: Number of unique crashes found over time in the LAVA-M dataset in 200 hours.

4%

16%

27%
31%

12%

4%
6%

Distribution	of	total crashes	
detected	in	all LAVA	apps

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

base64
(17)

md5sum
(29)

uniq
(16)

who
(54)

Distribution of unique crashes
detected	in	each LAVA app	

CollAFL-fast

AFL-fast

CollAFL-mem

CollAFL-desc

CollAFL-br

CollAFL

AFL

Fig. 11: Distribution of unique crashes found in the LAVA-M
dataset by different fuzzers.

Moreover, the code coverage of CollAFL-br grows faster
than others, especially for applications md5sum and who.
It shows that, the br seed selection policy is effective, and
CollAFL-br is better than other fuzzers in path discovery.

G. Crashes Found in LAVA-M dataset

During the 200 hours trial, we also tracked the number of
crashes found by fuzzers. Figure 10 demonstrates the growth of
crashes found. In general, CollAFL-br outperforms all others,
except that it underperforms CollAFL-desc in md5sum.

a) Distribution of Crashes in LAVA-M: Figure 11 shows
the distributions of unique crashes found in the LAVA-M
dataset by different fuzzers. On the left side, it demonstrates
the proportion of crashes found by each fuzzer in each ap-
plication. The number below each application name in the
x-axis represents the total number of unique crashes found
in that application. On the right side, it demonstrates the the
proportion of total crashes found by each fuzzer.

It shows that, CollAFL and CollAFL-fast could find more
crashes than AFL and AFL-fast respectively. So, our hash
collision mitigation improves the fuzzer’s ability of crash

14.29%

21.43%

46.43%

46.43%

28.57%

10.71%

21.43%

100%

AFL

CollAFL

CollAFL-br

CollAFL-desc

CollAFL-
mem

AFL-fast

CollAFL-fast

CollAFL*

Percentage of bugs
detected	in	all LAVA	apps (28 in total)	

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

base64
(8)

md5sum
(6)

uniq
(4)

who
(10)

Percentage of bugs
detected in each LAVA app

Fig. 12: Distribution of bugs found in the LAVA-M dataset by
different fuzzers.

finding, even though these applications only have about 1%
of edges collisions, as shown in Table I.

It also shows that, CollAFL-br is in general better than
other fuzzing solutions. So, our untouched-branch seed selec-
tion policy is better than other policies in crash finding.

b) Distribution of Vulnerabilities in LAVA-M: As
aforementioned, we used the automated analysis tool
afl-collect and AddressSanitizer to help deduplicate
crashes, and finnaly performed manual analysis to confirm
vulnerabilities.

Figure 12 shows the distribution of bugs found in the
LAVA-M dataset by different fuzzers. On the left side, it
demonstrates the distribution of bugs found by each fuzzer
in each application. The number below each application name
in the x-axis represents the total number of unique bugs found
in that application. A same bug may be found by multiple
fuzzers. On the right side, it demonstrates the overall capability
of different fuzzers in bug finding.

Our fuzzer CollAFL, with the default, br, desc
and mem seed selection policies, covered all vulnerabilities
that are discovered during the test, including those found by
AFL and AFL-fast. CollAFL-br and CollAFL-desc found over

TABLE X: The CVE vulnerabilities found by CollAFL

libtiff CVE-2017-9935, CVE-2017-11335, CVE-2017-9936, CVE-2017-
9937, CVE-2017-10688, CVE-2017-13726, CVE-2017-13727

libtasn1 CVE-2017-10790
libav CVE-2017-9989, CVE-2017-11684
libtorrent CVE-2017-9847
libming CVE-2017-9987, CVE-2017-9988
objdump CVE-2017-9955
nasm CVE-2017-10686, CVE-2017-11111, CVE-2017-14228, CVE-2017-

17812, CVE-2017-17816, CVE-2017-17817, CVE-2017-17818, CVE-
2017-17813, CVE-2017-17814, CVE-2017-17810, CVE-2017-17811,
CVE-2017-17820, CVE-2017-17819, CVE-2017-17815

libncurses CVE-2017-11112, CVE-2017-10684, CVE-2017-11113, CVE-2017-
10685, CVE-2017-13728, CVE-2017-13729, CVE-2017-13730, CVE-
2017-13731, CVE-2017-13732, CVE-2017-13733, CVE-2017-13734

nm CVE-2017-9954
tcpdump CVE-2017-11108, CVE-2017-9952
exiv2 CVE-2017-9953, CVE-2017-11336, CVE-2017-11337, CVE-2017-

11338, CVE-2017-11339, CVE-2017-11340, CVE-2017-11553, CVE-
2017-11591, CVE-2017-11592, CVE-2017-11683, CVE-2017-12955,
CVE-2017-12956, CVE-2017-12957

clamav CVE-2017-9976
dwarfdump CVE-2017-9998
mpg123 CVE-2017-10683
vim CVE-2017-11109
libpspp CVE-2017-10791, CVE-2017-10792, CVE-2017-12958, CVE-2017-

12959, CVE-2017-12960, CVE-2017-12961
libsass CVE-2017-10687, CVE-2017-11341, CVE-2017-11342, CVE-2017-

11554, CVE-2017-11555, CVE-2017-11556, CVE-2017-12962, CVE-
2017-12963, CVE-2017-12964

catdoc CVE-2017-11110
libgxps CVE-2017-11590
libraw CVE-2017-13735
graphicsmagick CVE-2017-13736, CVE-2017-13737
liblouis CVE-2017-13738, CVE-2017-13739, CVE-2017-13740, CVE-2017-

13741, CVE-2017-13742, CVE-2017-13743, CVE-2017-13744
jasper CVE-2017-13745, CVE-2017-13746, CVE-2017-13747, CVE-2017-

13748, CVE-2017-13749, CVE-2017-13750, CVE-2017-13751, CVE-
2017-13752, CVE-2017-14229

46% bugs that are discovered during the test, while AFL and
AFL-fast only found less than 15% bugs. So, our untouched-
branch and untouched-descendant seed selection policies are
better than others in vulnerability detection.

H. CVE Vulnerabilities

We have submitted proof-of-concept samples of these 157
vulnerabilities to upstream vendors. It turned out, 23 of them
are known to vendors (i.e., found by other researchers too), but
have not been fixed in any release yet (i.e., unknown to us).
The remaining 134 vulnerabilities are unknown to vendors,
and 95 of them are acknowledged by CVE. Table X shows the
detail list of CVE vulnerabilities.

I. Discussion

1) Accuracy of Edge Information: Our solution relies on
the compiler to get the edge information, and compute the
hashes accordingly, in order to resolve conflicts between edges.
However, it is an open challenge to get an accurate control
flow graph with static analysis. Our solution only guarantee to
resolve conflicts in known edges.

It is possible that the compiler may miss some edges,
and CollAFL suffers some hash collisions at runtime too. But
the overall collision ratio is much lower than AFL, because
(1) there are no collision in the known edges, which should
account for most edges; (2) the collision ratio in the unknown
edges should be similar to the one in AFL.

Our solution could be extended to binary programs too. But
the edge information would be much less accurate, due to the
well-known challenges in bianry analysis. We can anticipate
that the runtime hash collisions will increase.

However, we can make a conservative analysis, to include
more (maybe untrue) edges into consideration, and thus only
a small number of edges will be missed. We then could ensure
eliminating collisions in this extended set of edges. As a result,
we could ensure the collision ratio is very low. We will extend
our solution to binaries in the future work.

2) Idel Path Coverage Sensitivity: Our solution uses the
AFL’s default bitmap to track edge coverage information for
performance, which does not consider the order of edges. As
a result, the accurage information is not ideally accurate. For
example, two different paths may have the same set of edges
being hit with same hit counts.

It is worth trying another solution to get more accurate
path information and evaluate its effect on fuzzing. We can
anticipate a slowdown in the speed of fuzzing, but it could also
help the fuzzer to find paths with different calling context or
order. So it could help the fuzzer to find hidden vulnerabilities
as well. The biggest challenge here is to reduce the runtime
overhead of tracking. We are going to explore in this direction
in the future.

3) Utilizing Security Sanitizers: Our solution currently
does not apply any sanitizers during fuzzing, i.e., only crashes
or specific signals are reported, due to the performance con-
sideration. It could miss potential bugs, since some bugs may
not cause crashes even if they are triggered. For example, if
a buffer overflow is triggered without tampering any valuable
data, the program will not crash. In future work, we will apply
different Sanitizers (e.g., ASAN, UBSAN, etc.) on our fuzzer
and evaluate its effectiveness, in terms of both performance
and efficiency of vulnerability discovery.

4) Fuzzing Experiment Setup: The seeds for fuzzing are
indeed important. In order to discover more vulnerabilities,
we followed the widely adopted guideline [21] to select seeds.
In particular, the seeds for each application consist of two
parts: benchmarks carried by the target application itself, and
publicly available proof-of-concept samples that could trigger
vulnerabilities in earlier versions.

When fuzzing libraries, it is also important to choose
proper drivers (or front-ends). Fuzzers like libFuzzer require us
to write special wrappers to test target entry functions. In our
evaluation, we used the default driver programs carried with
the libraries themselves. For example, the libtiff library ships
with several tools, including tiff2pdf and tiff2ps. We fuzzed
these tools to find potential vulnerabilities in the backend libtiff
library.

