
CS448f: Image Processing For 
Photography and Vision

The Gradient Domain



Image Gradients

• We can approximate the derivatives of an image 
using differences

• Equivalent to convolution by [-1 1]

• Note the zero boundary condition

10 10 8 9 0 2 3 4 2 4

10 0 -2 1 -9 2 1 1 -2 2

m =

d/dx

dm/dx =



Image Derivatives

• We can get back to the image by integrating 
– like an integral image

• Differentiating throws away constant terms
– The boundary condition allowed us to recover it

10 10 8 9 0 2 3 4 2 4

10 0 -2 1 -9 2 1 1 -2 2m =

∫

∫ m dx =



Image Derivatives

• Can think of it as an extreme coarse/fine 
decomposition

– coarse = boundary term

– fine = gradients



In 2D

• Gradient in X = convolution by [-1 1]

• Gradient in Y = convolution by 

• If we take both, we have 2n values to 
represent n pixels

– Must be redundant!

-1
1



Redundancy

• d (dm/dx) / dy = d (dm/dy) / dx

• Y derivative of X gradient = X derivative of Y 
gradient



Gradient Domain Editing

• Gradient domain techniques

– Take image gradients

– Mess with them

– Try to put the image back together

• After you’ve messed with the gradients, the 
constraint on the previous slide doesn’t 
necessarily hold anymore.



The Poisson Solve

• Convolving by [-1 1] is a linear operator: Dx

• Taking the Y gradient is some operator: Dy

• We have desired gradient images gx and gy

• We want to find the image that best produces 
them

• Solve for an image m such that:



















y

x

y

x

g

g
m

D

D



The Poisson Solve

• How? Using Least Squares:

• This is a Poisson Equation

    

















y

xT

y

T

x

y

xT

y

T

x g

g
DDm

D

D
DD

y

T

yx

T

xy

T

yx

T

x gDgDmDDDD  )(



The Poisson Solve

• Dx = Convolution by [-1 1]

• Dx
T = Convolution by [1 -1]

• The product = Convolution by [1 -2 1]

– Approximate second derivative

• Dx
T Dx + Dy

T Dy = convolution by

1

1 -4 1

1



The Poisson Solve

• We need to invert:

• How big is the matrix?

• Anyone know any methods for inverting large 
sparse matrices?

y

T

yx

T

xy

T

yx

T

x gDgDmDDDD  )(



Solving Large Linear Systems

• A = Dx
T Dx + Dy

T Dy 

• b = Dx
Tgx + Dy

Tgy

• We need to solve Ax = b



1) Gradient Descent

• x = some initial estimate

• For (lots of iterations):

r = b - Ax

e = rTr

α = e / rTAr

x += αr



2) Conjugate Gradient Descent

• x = some initial estimate
• d = r = Ax - b
• enew = rTr
• For (fewer iterations):

α = enew / dTAd
x += αd
r = b - Ax
eold = enew

enew = rTr
d = r + d enew/eold

• (See An Introduction to the Conjugate Gradient 
Method Without the Agonizing Pain)



3) Coarse to Fine Conj. Grad. Desc.

• Downsample the target gradients

• Solve for a small solution

• Upsample the solution

• Use that as the initial estimate for a new conj. 
grad. descent

• Not too many iterations required at each level

• This is what ImageStack does in -poisson



4) FFT Method

• We’re trying to undo a convolution

• Convolutions are multiplications in Fourier 
space

• Therefore, go to Fourier space and divide



Applications

• How might we like to mess with the 
gradients?

• Let’s try some stuff



Applications

• Poisson Image Editing
– Perez 2003

• GradientShop
– Bhat 2009

• Gradient Domain HDR Compression
– Fattal et al 2002

• Efficient Gradien-Domain Compositing Using 
Quadtrees
– Agarwala 2007

• Coordinates for Instant Image Cloning
– Farbman et al. 2009


