目录
题目
判断一个栈 ST(最多元素 m0)为空的条件是()。
选项:
- A. ST->top == m0
- B. ST->top == 0
- C. ST->top != m0
- D. ST->top != 0
正确答案:B
解析
要判断栈是否为空,我们需要检查栈顶指针的值。通常情况下,栈的表示方式有以下特点:
- 栈顶指针
top
指向栈顶元素的位置。 - 栈为空时,栈中没有任何元素,因此
top
指向的位置应该是初始的栈底位置。对于栈的初始状态,top
通常被初始化为0
,表示栈内没有元素。
因此,判断栈是否为空的条件是:ST->top == 0
,这意味着当前栈中没有元素。
知识点讲解
-
栈的定义:
- 栈(Stack)是一种线性数据结构,遵循后进先出(LIFO, Last In First Out)原则。栈的基本操作包括:
- 入栈(push):将元素添加到栈顶。
- 出栈(pop):从栈顶移除元素。
- 栈(Stack)是一种线性数据结构,遵循后进先出(LIFO, Last In First Out)原则。栈的基本操作包括:
-
栈顶指针(top):
- 在栈的实现中,
top
是用来标识栈顶的位置的指针。 - 当栈为空时,通常将
top
指向 0,表示栈底的位置。随着元素入栈,top
的值增加,指向栈中最新插入的元素。
- 在栈的实现中,
-
栈空和栈满的判断:
- 栈空:当
top == 0
时,表示栈中没有元素,即栈为空。 - 栈满:对于大小为
m0
的栈,当top == m0
时,表示栈已满,不能再插入新元素。
- 栈空:当
知识点总结表格
知识点 | 说明 |
---|---|
栈 | 一种后进先出(LIFO)的线性数据结构 |
栈顶指针 top | 指向栈顶元素的位置 |
栈空条件 | ST->top == 0 |
栈满条件 | ST->top == m0 |
题目
下述几种排序方法中,平均比较次数最少的是()。
选项:
- A. 快速排序
- B. 选择排序
- C. 插入排序
- D. 归并排序
正确答案:A
解析
对于排序算法,我们通常关注它们在平均情况下的时间复杂度来衡量其效率。以下是各个排序算法的比较:
-
快速排序(Quick Sort):
- 平均时间复杂度为 O(n log n)。
- 通过选择一个基准元素并将数组分成两部分递归排序,快速排序在大多数情况下具有非常好的性能。
-
选择排序(Selection Sort):
- 平均时间复杂度为 O(n²)。
- 选择排序每次选择当前未排序部分中的最小值进行交换,比较次数相对较多。
-
插入排序(Insertion Sort):
- 平均时间复杂度为 O(n²)。
- 插入排序在最坏情况下需要将每个元素与前面所有的已排序元素进行比较,因此平均比较次数较多。
-
归并排序(Merge Sort):
- 平均时间复杂度为 O(n log n)。
- 虽然归并排序在时间复杂度上与快速排序相同,但其常数因子较大,且需要额外的空间用于合并两个有序子数组。
因此,快速排序在大多数情况下具有最低的平均比较次数,其平均时间复杂度为 O(n log n),比选择排序和插入排序更有效率,因此正确答案是 A。
知识点讲解
-
快速排序(Quick Sort):
- 是一种基于分治思想的排序算法。它通过选择基准(pivot),将数组划分为比基准小和比基准大的两个部分,然后递归地排序这两个部分。
- 在平均情况下,快速排序具有很好的性能,其时间复杂度为 O(n log n)。
-
选择排序(Selection Sort):
- 每次从未排序部分中选出最小的元素,并将其与当前未排序部分的第一个元素交换。
- 时间复杂度为 O(n²),比较次数多,效率较低。
-
插入排序(Insertion Sort):
- 对于每一个待排序的元素,将其插入到已排序部分的合适位置。
- 时间复杂度为 O(n²),适合于小规模或接近有序的数据。
-
归并排序(Merge Sort):
- 是一种稳定的排序算法,通过不断将数组分成两部分直至每个部分只有一个元素,然后合并这些部分得到有序数组。
- 时间复杂度为 O(n log n),但由于合并时需要额外的空间,因此其效率在某些场景中低于快速排序。
知识点总结表格
排序算法 | 平均时间复杂度 | 空间复杂度 | 比较次数情况 |
---|---|---|---|
快速排序 | O(n log n) | O(log n) | 平均比较次数最少 |
选择排序 | O(n²) | O(1) | 比较次数较多 |
插入排序 | O(n²) | O(1) | 平均比较次数较多 |
归并排序 | O(n log n) | O(n) | 平均情况比较次数较快 |
题目
对于下列关键字序列,不可能构成某二叉排序树中一条查找路径的序列是()。
选项:
- A. 12, 25, 71, 68, 33, 34
- B. 95, 22, 91, 24, 94, 71
- C. 21, 89, 77, 29, 36, 38
- D. 92, 20, 91, 34, 88, 35
正确答案:B
解析
二叉排序树(BST, Binary Search Tree)的基本性质是:
- 左子树中所有节点的值均小于根节点的值。
- 右子树中所有节点的值均大于根节点的值。
- 左右子树本身也分别是二叉排序树。
要判断一个序列是否可以成为某二叉排序树的一条查找路径,需要满足以下条件:每一个节点的访问过程应该符合上述性质,即在遍历过程中,某个节点之后的值要么全部大于它(右子树),要么全部小于它(左子树)。
对选项的逐一分析:
-
选项 A:
12, 25, 71, 68, 33, 34
- 这是一个合法的查找路径。路径中的值遵循了先增后减的规则,符合二叉排序树的特性,左、右子树的关系可以成立。
-
选项 B:
95, 22, 91, 24, 94, 71
- 这一序列中,存在一个矛盾点:在从
95
降至22
后,又升至91
,接着又降至24
。这不符合二叉排序树的性质,因为在一个二叉排序树中,若沿着一条查找路径往左走,后续所有节点应该都比之前的节点小,不能再突然增大。因此选项 B 无法满足二叉排序树的性质。
- 这一序列中,存在一个矛盾点:在从
-
选项 C:
21, 89, 77, 29, 36, 38
- 这个序列可以表示沿着二叉排序树中的一条路径。虽然路径中存在值的增减,但整个过程可以通过二叉排序树中的节点分布来解释,没有违反二叉排序树的规则。
-
选项 D:
92, 20, 91, 34, 88, 35
- 该序列也可以表示为某二叉排序树中的查找路径,节点之间的大小关系可以通过合理的子树结构来满足。
知识点讲解
-
二叉排序树(BST):
- 二叉排序树是一种二叉树,具有以下性质:对于每个节点,其左子树中所有节点的值都小于该节点的值,右子树中所有节点的值都大于该节点的值。
- 查找路径是指从根节点开始,沿着左右子树查找到目标节点的路径。
-
查找路径:
- 在 BST 中的查找路径遵循每次比较大小的原则,决定是向左还是向右继续查找。
- 合法的查找路径意味着序列中的节点值必须符合 BST 的性质,不能在某个节点之后出现违反大小关系的情况。
知识点总结表格
知识点 | 说明 |
---|---|
二叉排序树(BST) | 每个节点的左子树小于该节点,右子树大于该节点 |
查找路径 | 从根节点到目标节点的一条路径 |
合法查找路径条件 | 节点值的顺序需符合 BST 的性质 |
违反 BST 性质的情况 | 查找路径中,节点值的变化不符合左小右大的规则 |
题目
堆是一种( )排序。
选项:
- A. 插入
- B. 交换
- C. 选择
- D. 归并
正确答案:C
解析
堆排序(Heap Sort)是一种基于堆数据结构实现的排序算法,其核心思想可以归类为选择排序。选择排序的基本思想是通过不断选择未排序部分中的最大值或最小值来进行排序。堆排序正是通过构造一个最大堆或最小堆,逐次选择堆顶元素来实现这一过程。
堆排序分为两个主要步骤:
- 构建初始堆(通常是最大堆)。
- 反复将堆顶元素(最大值)与末尾元素交换,然后重新调整堆,以保持堆的性质。
由于堆的结构特性,堆排序通过将最大值或最小值逐一选择并放置到最终位置,因此可以归为选择排序。
知识点讲解
-
堆(Heap):
- 堆是一种特殊的完全二叉树,分为最大堆和最小堆:
- 在最大堆中,父节点的值始终大于或等于其子节点。
- 在最小堆中,父节点的值始终小于或等于其子节点。
- 堆是一种特殊的完全二叉树,分为最大堆和最小堆:
-
堆排序(Heap Sort):
- 堆排序是基于堆数据结构的一种排序方法,时间复杂度为 O(n log n)。
- 堆排序是一种选择排序,因为它通过选择未排序部分的最大值(使用最大堆)来逐步实现排序。
- 堆排序不需要额外的存储空间,是一种原地排序算法,但其构建堆的过程需要调整元素的位置,因此不是稳定排序算法。
-
选择排序:
- 选择排序是一种每次选出当前未排序部分的最大值或最小值并将其放到合适位置的排序方法。
- 堆排序可以被看作是选择排序的优化版本,通过堆数据结构来高效选择最大值或最小值。
知识点总结表格
知识点 | 说明 |
---|---|
堆 | 一种特殊的完全二叉树,分为最大堆和最小堆 |
堆排序(Heap Sort) | 基于堆数据结构实现的选择排序,时间复杂度为 O(n log n) |
选择排序 | 通过选择当前未排序部分的最大/最小值来进行排序 |
稳定性 | 堆排序不是稳定排序 |
题目 5
若一个有向图中的顶点不能排成一个拓扑序列,则可断定该有向图()。
选项:
- A. 含有多个入度为 0 的顶点
- B. 是个有根有向图
- C. 是个强连通图
- D. 含有顶点数目大于 1 的强连通分量
正确答案:D
解析
拓扑排序用于将有向无环图(DAG, Directed Acyclic Graph)中的顶点排列成一个线性序列。若一个有向图无法排成拓扑序列,则说明该图中存在环。
在图论中,存在环的有向图不可能通过拓扑排序进行线性排列,因为环中的节点相互依赖,无法找到明确的开始或结束节点。对于这种情况下的有向图:
- 存在一个或多个包含多个顶点的强连通分量(SCC, Strongly Connected Component),即从任意一个节点可以到达其余所有节点。
- 这些强连通分量中的顶点数目大于 1,表示图中存在无法线性排序的部分。
因此,无法排成拓扑序列可以断定该有向图含有顶点数目大于 1 的强连通分量。
知识点讲解
-
拓扑排序:
- 适用于有向无环图(DAG),用于线性排列图中的节点,使得每条有向边
(u, v)
中节点u
在节点v
之前。 - 若图中存在环,则无法对其进行拓扑排序。
- 适用于有向无环图(DAG),用于线性排列图中的节点,使得每条有向边
-
强连通分量(SCC):
- 在有向图中,如果从节点
u
可以到达节点v
,并且从节点v
也可以到达节点u
,则称这些节点构成一个强连通分量。 - 如果图中存在强连通分量,且顶点数目大于 1,则这些节点之间存在环,无法进行拓扑排序。
- 在有向图中,如果从节点
知识点总结表格
知识点 | 说明 |
---|---|
拓扑排序 | 适用于有向无环图,将顶点排列为线性序列 |
有向无环图(DAG) | 没有环的有向图,可以进行拓扑排序 |
强连通分量(SCC) | 图中节点之间相互可达的子图,可能构成环 |
无法拓扑排序的条件 | 图中存在环,包含顶点数目大于 1 的强连通分量 |
题目 6
在 n
个结点的顺序表中,算法的时间复杂度是 O(1)
的操作是()。
选项:
- A. 将
n
个结点从小到大排序 - B. 删除第
i
个结点(1 ≤ i ≤ n)
- C. 访问第
i
个结点(1 ≤ i ≤ n)
和求第i
个结点的直接前趋(2 ≤ i ≤ n)
- D. 在第
i
个结点后插入一个新结点(1 ≤ i ≤ n)
正确答案:C
解析
在顺序表(例如数组)中,随机访问的时间复杂度为 O(1)
,因为数组支持通过索引直接定位到特定元素。因此,以下操作在顺序表中均为 O(1)
:
- 访问第
i
个结点:可以直接通过索引访问,时间复杂度为O(1)
。 - 求第
i
个结点的直接前趋:由于顺序表支持随机访问,只需访问第i-1
个元素即可,因此时间复杂度也是O(1)
。
其他选项的分析:
- 选项 A(排序):排序需要比较多个元素,时间复杂度至少为
O(n log n)
。 - 选项 B(删除第
i
个结点):删除操作需要移动其后的所有元素,平均时间复杂度为O(n)
。 - 选项 D(插入新结点):插入操作也需要移动部分元素,因此时间复杂度为
O(n)
。
知识点讲解
- 顺序表(数组):
- 顺序表是一种线性表,使用连续的存储空间存储元素,支持随机访问,即可以通过索引直接访问特定位置的元素,时间复杂度为
O(1)
。
- 顺序表是一种线性表,使用连续的存储空间存储元素,支持随机访问,即可以通过索引直接访问特定位置的元素,时间复杂度为
- 时间复杂度:
- 访问元素:对于顺序表,通过索引访问元素的时间复杂度为
O(1)
。 - 删除和插入:由于需要移动后续元素,删除和插入的时间复杂度为
O(n)
。
- 访问元素:对于顺序表,通过索引访问元素的时间复杂度为
知识点总结表格
知识点 | 操作描述 | 时间复杂度 |
---|---|---|
访问元素 | 通过索引访问顺序表中的元素 | O(1) |
求直接前趋 | 通过索引访问顺序表中的前一元素 | O(1) |
删除元素 | 删除某个元素,需要移动后续元素 | O(n) |
插入元素 | 在指定位置插入,需要移动后续元素 | O(n) |