目录
题目41:线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。
题目44:向一个栈顶指针为 HS 的带头结点链栈中插入一个 s 所指结点时,则执行()。
题目50:采用顺序查找方法查找长度为 n 的线性表时,每个元素的平均查找长度为()。
题目51:设有两个串 S1 和 S2,求 S2 在 S1 中首次出现的位置的运算称作()。
题目52:设高度为 h 的二叉树上只有度为 0 和度为 2 的结点,则此类二叉树中所包含的结点数至少为()。
题目53:循环队列用数组存放其元素值 A[0, m−1],已知其头尾指针分别是 front 和 rear,则当前队列中的元素个数是()。
题目54:在含有 27 个结点的二叉排序树上查找关键字为 35 的结点,则依次比较的关键字序列有可能是()。
题目40:关于二叉排序树的描述不正确的是()。
描述: 以下关于二叉排序树的描述,哪一项是不正确的?
选项:
- A. 在最坏情况下,利用插入操作构造一棵二叉排序树花费的代价为 O(nlog₂n)
- B. 二叉排序树的查找效率取决于树的形态
- C. 在含有 n 个结点的平衡二叉排序树中,查找失败时最多花费代价为 O(log₂n)
- D. 从二叉排序树中删去一个结点后再重新插入,一定是作为叶子结点插入的
正确答案: A
解析:
选项 A 不正确。在最坏情况下,二叉排序树(BST)会退化成一个链表,这种情况下,每次插入操作需要遍历已有的所有节点,因此构造一棵包含 n 个结点的二叉排序树的代价为 O(n²),而不是 O(nlog₂n)。
知识点讲解:
-
二叉排序树(BST)结构:
- 每个节点有一个键值,左子树所有节点的键值小于根节点,右子树所有节点的键值大于根节点。
- 查找、插入和删除操作的效率取决于树的高度。
-
时间复杂度分析:
- 平均情况:对于随机插入的 BST,期望高度为 O(log₂n),因此查找、插入和删除的平均时间复杂度为 O(log₂n)。
- 最坏情况:当插入的数据是有序的,BST 退化为链表,操作的时间复杂度为 O(n)。
-
平衡二叉排序树:
- 如 AVL 树或红黑树,保证树的高度为 O(log₂n),因此操作的时间复杂度始终为 O(log₂n)。
- 在平衡 BST 中,查找失败的最坏代价也是 O(log₂n)。
-
删除和插入操作:
- 删除一个节点后,重新插入时,节点的位置取决于当前树的结构,不一定是叶子节点。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
二叉排序树结构 | 每个节点有一个键值,左子树键值小于根,右子树键值大于根 | 查找、插入、删除 |
时间复杂度分析 | 根据树的高度,操作的时间复杂度不同 | 最佳和最坏情况的时间复杂度评估 |
平衡二叉排序树 | 通过旋转等操作保持树的平衡,确保高度为 O(log₂n) | AVL 树、红黑树 |
操作后的节点插入 | 删除后重新插入节点的位置取决于当前树的结构,不定为叶子节点 | 插入操作的灵活性 |
题目41:线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。
选项:
- A. 部分的地址必须是连续的
- B. 连续或不连续都可以
- C. 必须是连续的
- D. 一定是不连续的
正确答案: B
解析:
选项 B 正确。链式存储结构通过指针将各个结点链接起来,不要求内存地址必须连续,可以是任何可用的存储地址。这与顺序存储结构不同,后者要求数据元素在内存中连续存放。
知识点讲解:
-
存储结构分类:
- 顺序存储结构:数据元素在内存中按顺序连续存放,如数组。
- 链式存储结构:数据元素通过指针链接,存储地址可以不连续,如链表。
-
链式存储的优点:
- 动态分配内存,节省空间。
- 插入和删除操作效率高,不需要移动其他元素。
-
链式存储的缺点:
- 需要额外的存储空间来保存指针。
- 不支持高效的随机访问。
-
适用场景:
- 适用于频繁插入和删除操作的场合。
- 数据量动态变化较大的情况。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
存储结构分类 | 顺序存储与链式存储的区别 | 数组 vs 链表 |
链式存储的特点 | 内存地址不需连续,通过指针连接各个结点 | 插入、删除操作 |
链式存储的优缺点 | 动态分配、插入删除效率高 vs 需要额外指针空间、随机访问低效 | 适用场景分析 |
动态内存分配 | 根据需要动态分配内存,灵活性高 | 链表、动态数组 |
题目42:快速排序在( )情况下最易发挥其长处。
选项:
- A. 被排序的数据完全无序
- B. 被排序的数据中的最大值和最小值相差悬殊
- C. 被排序的数据已基本有序
- D. 被排序的数据中含有多个相同的排序码
正确答案: A
解析:
选项 A 正确。快速排序在数据完全无序时,通过有效的分区操作可以将数据集有效划分,充分发挥其分治策略的优势,达到 O(nlog₂n) 的平均时间复杂度。
知识点讲解:
-
快速排序基本原理:
- 选择一个基准元素,通过一趟排序将数据分为两部分,一部分比基准小,另一部分比基准大,然后递归排序两部分。
-
快速排序的性能:
- 最佳和平均情况:基准元素将数组大致均匀地分割,时间复杂度为 O(nlog₂n)。
- 最坏情况:基准元素为最小或最大值,导致递归深度为 O(n),时间复杂度为 O(n²)。
-
数据分布对快速排序的影响:
- 完全无序的数据有利于快速排序发挥其分治优势。
- 已基本有序的数据容易导致快速排序退化为最坏情况,除非使用随机化基准或其他优化策略。
-
优化策略:
- 随机选择基准元素。
- 使用三数取中法选择基准。
- 在递归深度过大时切换到其他排序算法(如插入排序)。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
快速排序原理 | 分治策略,选择基准元素分割数组 | 选择基准、分区、递归排序 |
时间复杂度分析 | 平均 O(nlog₂n),最坏 O(n²) | 最佳、平均与最坏情况分析 |
数据分布影响 | 数据无序 vs 有序对排序性能的影响 | 基准选择策略、优化措施 |
快速排序优化策略 | 随机化基准、三数取中、递归深度控制 | 提高排序效率,避免退化 |
题目44:向一个栈顶指针为 HS 的带头结点链栈中插入一个 s 所指结点时,则执行()。
选项:
- A. s->next=HS; HS=s;
- B. HS->next=s;
- C. s->next=HS->next; HS->next=s;
- D. s->next=HS; HS=HS->next;
正确答案: C
解析:
选项 C 正确。在带头结点的链栈中,插入新结点时需要将新结点插入到头结点之后。具体操作为:
s->next = HS->next;
将新结点的next
指向当前栈顶结点。HS->next = s;
将头结点的next
指向新结点。
知识点讲解:
-
链栈结构:
- 使用链表实现栈,通常带一个头结点。
- 栈顶由头结点的
next
指针指向。
-
插入操作(Push):
- 创建新结点。
- 将新结点的
next
指向当前栈顶结点。 - 更新头结点的
next
指向新结点。
-
带头结点的优势:
- 简化插入和删除操作,不需要特殊处理空栈情况。
- 统一操作逻辑,提高代码简洁性。
-
指针操作注意事项:
- 插入前需保存原有指针,避免链表断裂。
- 确保新结点正确链接到链表中。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
链栈结构 | 使用链表实现栈,带头结点简化操作 | Push(插入)、Pop(删除) |
插入操作(Push) | 将新结点插入到链栈顶部 | 更新指针,保持链表完整性 |
带头结点的优势 | 统一操作逻辑,简化空栈处理 | 代码简洁性,操作一致性 |
指针操作 | 正确维护 next 指针,避免链表断裂 | 结点链接与插入逻辑 |
题目45:一个栈 ST(最多元素 m0)为满的条件是()。
选项:
- A. ST->top != 0
- B. ST->top == m0
- C. ST->top == 0
- D. ST->top != m0
正确答案: B
解析:
选项 B 正确。当栈顶指针 top
达到最大容量 m0
时,表示栈已满,不能再插入新元素。
知识点讲解:
-
栈的结构:
- 栈是一种“后进先出”(LIFO)的数据结构。
- 通过栈顶指针
top
来指示当前栈的顶端位置。
-
顺序存储栈:
- 使用数组实现栈,栈顶指针
top
用于标识栈顶元素的位置。 - 栈的容量有限,通常由数组大小决定。
- 使用数组实现栈,栈顶指针
-
栈满的判断:
- 当
top
指向数组的最后一个有效位置(即top == m0
)时,栈被认为是满的,无法再进行push
操作。
- 当
-
栈的基本操作:
- Push:向栈顶插入元素,需先检查栈是否已满。
- Pop:从栈顶移除元素,需先检查栈是否为空。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
栈的结构 | “后进先出”数据结构,通过栈顶指针管理 | Push、Pop |
顺序存储栈 | 使用数组实现,栈顶指针指向当前栈顶元素 | 限定栈容量,判断栈满 |
栈满的条件 | 栈顶指针达到最大容量 m0 | top == m0 |
栈的基本操作 | 插入与删除操作需判断栈的状态 | 确保操作合法性,避免溢出或下溢 |
题目46:链式存储的存储结构所占存储空间()。
选项:
- A. 只有一部分,存放结点值
- B. 只有一部分,存储表示结点间关系的指针
- C. 分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针
- D. 分两部分,一部分存放结点值,另一部分存放结点所占单元数
正确答案: C
解析:
选项 C 正确。链式存储结构的每个结点通常包含两部分:
- 数据域:存放结点的值。
- 指针域:存放指向下一个结点(或前后结点)的指针,用于表示结点间的关系。
知识点讲解:
-
链式存储结构:
- 通过指针将各个结点链接起来,形成链表、栈、队列等数据结构。
- 每个结点包含数据和指针两部分。
-
结点结构:
- 数据域(Data):存储具体的数据内容。
- 指针域(Pointer):存储指向其他结点的地址。
-
存储空间分配:
- 每个结点的指针域增加了额外的存储开销,相比顺序存储结构更占用空间。
- 链式存储的灵活性高,可以动态增减结点。
-
应用场景:
- 适用于数据量动态变化、频繁插入和删除操作的场合。
- 不适合需要频繁随机访问的场景。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
链式存储结构 | 通过指针链接结点,形成链表等结构 | 插入、删除、遍历 |
结点结构 | 每个结点包含数据域和指针域 | 存储数据和关系 |
存储空间分配 | 指针域增加了存储开销,但提供了动态性 | 动态内存管理,灵活操作 |
应用场景 | 适用于动态数据、频繁操作的场合 | 动态链表、栈、队列 |
题目47:算法分析的主要任务之一是分析()。
选项:
- A. 算法的功能是否符合设计要求
- B. 算法是否具有较好的可读性
- C. 算法的执行时间和问题规模之间的关系
- D. 算法中是否存在语法错误
正确答案: C
解析:
选项 C 正确。算法分析的主要任务之一是评估算法的执行时间(时间复杂度)和空间(空间复杂度)与问题规模之间的关系,以确定算法的效率和可扩展性。
知识点讲解:
-
算法分析的目的:
- 评估算法的效率和资源消耗。
- 比较不同算法的优劣,选择最适合的算法。
-
时间复杂度:
- 描述算法执行时间随着输入规模增长的趋势。
- 常见表示法包括大 O 表示法(如 O(n)、O(log n)、O(n²))。
-
空间复杂度:
- 描述算法在执行过程中所需内存空间随着输入规模增长的趋势。
- 评估算法的内存效率。
-
分析方法:
- 渐近分析:关注输入规模趋近于无限时的行为。
- 最坏情况、最佳情况和平均情况分析。
-
其他分析内容:
- 算法的正确性证明。
- 算法的可读性和可维护性,但这些不是算法分析的主要任务。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
算法分析目的 | 评估算法效率和资源消耗 | 时间复杂度、空间复杂度评估 |
时间复杂度 | 描述执行时间与输入规模的关系 | 大 O 表示法,如 O(n)、O(log n) |
空间复杂度 | 描述内存使用与输入规模的关系 | 评估算法的内存效率 |
分析方法 | 渐近分析、最坏情况、最佳情况、平均情况 | 选择合适的分析方法 |
其他分析内容 | 算法正确性、可读性、可维护性 | 但不属于主要分析任务 |
题目48:快速排序方法在( )情况下,最不利于发挥其长处。
选项:
- A. 要排序的数据中含有多个相同值
- B. 要排序的数据已基本有序
- C. 要排序的数据个数为奇数
- D. 要排序的数据量太大
正确答案: B
解析:
选项 B 正确。快速排序在数据基本有序时,尤其是选择不当的基准元素,容易退化为 O(n²) 的时间复杂度,导致性能急剧下降。因此,已基本有序的数据最不利于快速排序发挥其优势。
知识点讲解:
-
快速排序性能受数据分布影响:
- 数据完全无序时,快速排序能有效分区,达到最佳性能。
- 数据基本有序时,若基准选择不当,可能导致极端不平衡的分区。
-
基准元素选择策略:
- 固定基准:如总是选择第一个或最后一个元素,容易在有序或近有序数据中退化。
- 随机基准:随机选择基准,降低退化概率。
- 三数取中:选择首、中、尾三个元素的中位数作为基准,提高分区均衡性。
-
优化措施:
- 使用随机化基准选择。
- 在分区不均衡时,切换到其他排序算法(如堆排序)。
- 对小规模子数组使用插入排序提高效率。
-
大数据量的处理:
- 快速排序适用于大数据量,但需要合理选择基准和优化策略,避免最坏情况。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
快速排序性能影响因素 | 数据分布对快速排序效率的影响 | 数据是否有序,基准选择策略 |
基准选择策略 | 决定分区的基准元素选择方法 | 固定基准、随机基准、三数取中 |
快速排序优化措施 | 提高排序效率,避免最坏情况 | 随机化基准、切换算法、混合排序 |
大数据量处理 | 快速排序在大数据量下的表现与优化 | 合理基准选择,避免退化 |
题目49:栈结构通常采用的两种存储结构是()。
选项:
- A. 线性存储结构和非线性存储结构
- B. 链表存储结构和数组
- C. 散列方式和索引方式
- D. 顺序存储结构和链式存储结构
正确答案: D
解析:
选项 D 正确。栈结构通常采用两种存储结构来实现:
- 顺序存储结构:使用数组实现,具有固定的大小和高效的随机访问。
- 链式存储结构:使用链表实现,具有动态大小和灵活的内存使用。
知识点讲解:
-
栈的两种实现方式:
- 顺序存储栈:
- 使用数组存储栈元素。
- 栈顶指针用于指示当前栈顶位置。
- 优点:高效的随机访问,缓存友好。
- 缺点:栈容量固定,可能导致空间浪费或溢出。
- 链式存储栈:
- 使用链表存储栈元素,每个结点包含数据和指针。
- 栈顶指针指向链表的头部。
- 优点:动态大小,灵活内存利用。
- 缺点:每个结点需要额外的指针空间,访问速度较慢。
- 顺序存储栈:
-
选择存储结构的考虑因素:
- 空间需求:顺序存储适合已知大小且不频繁变化的栈,链式存储适合动态变化的栈。
- 操作效率:顺序存储在访问局部性上有优势,链式存储在动态操作上更灵活。
-
应用场景:
- 顺序存储栈:函数调用栈、表达式求值等。
- 链式存储栈:需要频繁插入和删除的场合,如浏览器的历史记录。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
栈的实现方式 | 顺序存储和链式存储 | 数组实现 vs 链表实现 |
顺序存储栈 | 使用数组,固定大小,高效随机访问 | Push、Pop操作高效 |
链式存储栈 | 使用链表,动态大小,灵活内存利用 | 动态Push、Pop,内存利用高效 |
选择存储结构的因素 | 空间需求、操作效率、应用场景 | 根据需求选择合适的存储结构 |
题目50:采用顺序查找方法查找长度为 n 的线性表时,每个元素的平均查找长度为()。
选项:
- A. n/2
- B. n
- C. (n−1)/2
- D. (n+1)/2
正确答案: D
解析:
选项 D 正确。顺序查找的平均查找长度为 (n + 1)/2。这是因为在最坏情况下需要查找到第 n 个元素,而平均而言,每次查找需要比较约 (n + 1)/2 次。
知识点讲解:
-
顺序查找概述:
- 线性地从第一个元素开始,依次比较,直到找到目标元素或遍历完所有元素。
- 简单易实现,适用于无序或小规模的数据集。
-
平均查找长度(ASL):
- 定义为成功查找的平均比较次数。
- 对于等概率的查找情况,ASL = (1 + 2 + ... + n) / n = (n + 1)/2。
-
最坏和最佳情况:
- 最佳情况:目标元素是第一个元素,比较次数为 1。
- 最坏情况:目标元素不存在或是最后一个元素,比较次数为 n。
-
顺序查找的应用场景:
- 数据规模较小或无序的情况下。
- 插入和删除操作频繁的线性表。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
顺序查找概述 | 从头到尾逐个元素比较查找目标元素 | 线性扫描,逐个比较 |
平均查找长度(ASL) | 对于等概率查找,ASL = (n + 1)/2 | 计算平均比较次数 |
查找情况 | 最佳情况 vs 最坏情况 | 比较次数分析 |
应用场景 | 数据无序、小规模或频繁插入删除的线性表 | 简单实现,适用于特定场合 |
题目51:设有两个串 S1 和 S2,求 S2 在 S1 中首次出现的位置的运算称作()。
选项:
- A. 连接
- B. 模式匹配
- C. 求子串
- D. 判断是否相等
正确答案: B
解析:
选项 B 正确。求一个串在另一个串中首次出现的位置的运算称为模式匹配。这涉及查找模式串 S2 在文本串 S1 中的匹配位置。
知识点讲解:
-
模式匹配概念:
- 在文本串中查找模式串出现的位置。
- 基本任务之一,广泛应用于搜索、文本编辑器、DNA序列分析等领域。
-
常见的模式匹配算法:
- 暴力匹配:逐个字符比较,时间复杂度 O(nm)。
- KMP 算法:利用部分匹配表,时间复杂度 O(n + m)。
- Boyer-Moore 算法:从后向前匹配,跳跃步长优化,平均性能优异。
- Rabin-Karp 算法:利用哈希函数,适用于多模式匹配。
-
模式匹配的应用:
- 文本搜索与替换。
- 编译器中的词法分析。
- 数据挖掘与信息检索。
-
求子串与模式匹配的区别:
- 求子串通常指提取特定位置的子字符串。
- 模式匹配指查找子串在主串中的位置。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
模式匹配概念 | 在文本中查找模式串的位置 | 字符串搜索,匹配算法 |
常见匹配算法 | 暴力匹配、KMP、Boyer-Moore、Rabin-Karp | 提高匹配效率,降低时间复杂度 |
应用领域 | 文本编辑、搜索引擎、编译器、DNA序列分析 | 多领域广泛应用 |
求子串与模式匹配区别 | 求子串是提取,模式匹配是查找 | 操作目的不同 |
题目52:设高度为 h 的二叉树上只有度为 0 和度为 2 的结点,则此类二叉树中所包含的结点数至少为()。
选项:
- A. 2^h - 1
- B. 2h + 1
- C. h + 1
- D. 2h
正确答案: A
解析:
选项 A 正确。对于高度为 h 的满二叉树(每个非叶子结点有两个子结点),结点总数为 2^h - 1。这满足题目中所有结点的度为 0 或 2 的条件,因此这是此类二叉树的最小结点数。
知识点讲解:
-
二叉树的高度与结点数关系:
- 满二叉树:每个非叶子结点都有两个子结点,结点总数为 2^h - 1。
- 完全二叉树:除了最后一层外,每层都被完全填满,最后一层从左至右填充。
- 普通二叉树:结点的分布无特定要求。
-
结点的度:
- 度为 0:叶子结点,没有子结点。
- 度为 2:每个非叶子结点有两个子结点。
- 度为 1:每个非叶子结点有一个子结点(本题中不允许)。
-
最小结点数推导:
- 高度为 h,满足度为 0 或 2 的条件,必须为满二叉树。
- 结点总数为 2^h - 1。
-
应用实例:
- 满二叉树在许多算法中作为理想数据结构,如堆。
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
二叉树类型 | 满二叉树、完全二叉树、普通二叉树 | 结点分布与高度关系 |
结点的度 | 结点的子结点数 | 度为0(叶子)和度为2(双子节点) |
高度与结点数关系 | 满二叉树结点数公式为 2^h - 1 | 推导最小结点数 |
应用实例 | 堆、二叉搜索树等 | 理想结构在算法中的应用 |
题目53:循环队列用数组存放其元素值 A[0, m−1],已知其头尾指针分别是 front 和 rear,则当前队列中的元素个数是()。
选项:
- A. rear - front + 1
- B. rear - front - 1
- C. (rear - front + m) % m
- D. rear - front
正确答案: C
解析:
选项 C 正确。循环队列中,当前队列中的元素个数可以通过公式 (rear - front + m) % m
计算。这是因为 rear
可能已经回绕到 front
前面,通过加上队列的大小 m
并取模,确保结果为正数并正确表示元素个数。
知识点讲解:
-
循环队列概念:
- 基于数组实现的队列,通过头尾指针循环使用数组空间,避免空间浪费。
- 当尾指针
rear
到达数组末尾后,下一个元素插入到数组的起始位置。
-
队列的满和空状态:
- 空队列:
front == rear
。 - 满队列:
(rear + 1) % m == front
。
- 空队列:
-
元素个数计算:
- 使用公式
(rear - front + m) % m
。 - 解释:
- 如果
rear >= front
,则元素个数为rear - front
。 - 如果
rear < front
,则元素个数为rear + (m - front)
。
- 如果
- 使用公式
-
指针操作:
- 入队(Enqueue):在
rear
位置插入元素,rear = (rear + 1) % m
。 - 出队(Dequeue):移除
front
位置元素,front = (front + 1) % m
。
- 入队(Enqueue):在
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
循环队列概念 | 基于数组实现,头尾指针循环使用数组空间 | 入队、出队操作 |
队列满与空的判断 | 空队列:front == rear ,满队列:(rear + 1) % m == front | 队列状态判断 |
元素个数计算公式 | (rear - front + m) % m | 适应 rear 回绕的情况 |
指针操作 | 入队时更新 rear ,出队时更新 front | 模拟环形结构,避免溢出 |
题目54:在含有 27 个结点的二叉排序树上查找关键字为 35 的结点,则依次比较的关键字序列有可能是()。
选项:
- A. 18, 36, 28, 46, 35
- B. 46, 28, 18, 36, 35
- C. 28, 36, 18, 46, 35
- D. 46, 36, 18, 28, 35
正确答案: D
解析:
选项 D 正确。该序列符合二叉排序树(BST)的性质,即左子树所有结点小于根结点,右子树所有结点大于根结点。以 46 为根,35 小于 46,进入左子树;然后 36 大于 35,应进入左子树;以此类推,最终找到 35。
知识点讲解:
-
二叉排序树(BST)性质:
- 每个节点的左子树中的所有结点的键值小于该节点的键值。
- 每个节点的右子树中的所有结点的键值大于该节点的键值。
-
查找过程:
- 从根节点开始,比较目标关键字与当前结点的关键字。
- 如果相等,查找成功。
- 如果目标关键字小于当前结点,进入左子树;否则,进入右子树。
- 重复上述过程,直到找到目标或达到叶子节点。
-
查找比较序列的有效性:
- 比较序列必须符合 BST 的查找路径。
- 每一步比较决定了下一个访问的子树方向。
-
实例分析:
- 选项 D 的比较序列 D. 46, 36, 18, 28, 35:
- 35 < 46 → 左子树
- 35 < 36 → 左子树
- 35 < 18 → 不符合,需调整解释
- 实际上,原解析有误。正确序列应符合 BST 的性质。
更正: 重新分析各选项,确保符合 BST 性质。
-
选项 A: 18, 36, 28, 46, 35
- 18 为根,35 > 18 → 进入右子树。
- 36 > 18 → 进入右子树。
- 28 < 36 → 进入左子树。
- 46 > 28 → 进入右子树。
- 35 < 46 → 查找失败。
-
选项 B: 46, 28, 18, 36, 35
- 46 为根,35 < 46 → 进入左子树。
- 28 < 46 → 进入左子树。
- 18 < 28 → 进入左子树。
- 36 > 18 → 不符合,继续左子树应无此元素。
-
选项 C: 28, 36, 18, 46, 35
- 28 为根,35 > 28 → 进入右子树。
- 36 > 28 → 进入右子树。
- 18 < 36 → 进入左子树。
- 46 > 36 → 进入右子树。
- 35 < 46 → 查找失败。
-
选项 D: 46, 36, 18, 28, 35
- 46 为根,35 < 46 → 进入左子树。
- 36 < 46 → 进入左子树。
- 18 < 36 → 进入左子树。
- 28 > 18 → 进入右子树。
- 35 > 28 → 进入右子树,找到 35。
因此,选项 D 是唯一符合 BST 性质的比较序列。
- 选项 D 的比较序列 D. 46, 36, 18, 28, 35:
知识点总结表格:
知识点 | 描述 | 相关操作 |
---|---|---|
二叉排序树性质 | 左子树小于根,右子树大于根 | 查找、插入、删除 |
查找过程 | 从根开始,逐层比较决定进入左子树或右子树 | 递归或迭代查找 |
比较序列有效性 | 必须符合 BST 的查找路径 | 确保每步比较方向正确 |
实例分析与验证 | 分析选项中的序列是否符合 BST 的性质 | 正确序列符合查找路径 |