数据结构期末复习(6)

目录

题目40:关于二叉排序树的描述不正确的是()。

解析:

知识点讲解:

知识点总结表格:

题目41:线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。

解析:

知识点讲解:

知识点总结表格:

题目42:快速排序在( )情况下最易发挥其长处。

解析:

知识点讲解:

知识点总结表格:

题目44:向一个栈顶指针为 HS 的带头结点链栈中插入一个 s 所指结点时,则执行()。

解析:

知识点讲解:

知识点总结表格:

题目45:一个栈 ST(最多元素 m0)为满的条件是()。

解析:

知识点讲解:

知识点总结表格:

题目46:链式存储的存储结构所占存储空间()。

解析:

知识点讲解:

知识点总结表格:

题目47:算法分析的主要任务之一是分析()。

解析:

知识点讲解:

知识点总结表格:

题目48:快速排序方法在( )情况下,最不利于发挥其长处。

解析:

知识点讲解:

知识点总结表格:

题目49:栈结构通常采用的两种存储结构是()。

解析:

知识点讲解:

知识点总结表格:

题目50:采用顺序查找方法查找长度为 n 的线性表时,每个元素的平均查找长度为()。

解析:

知识点讲解:

知识点总结表格:

题目51:设有两个串 S1 和 S2,求 S2 在 S1 中首次出现的位置的运算称作()。

解析:

知识点讲解:

知识点总结表格:

题目52:设高度为 h 的二叉树上只有度为 0 和度为 2 的结点,则此类二叉树中所包含的结点数至少为()。

解析:

知识点讲解:

知识点总结表格:

题目53:循环队列用数组存放其元素值 A[0, m−1],已知其头尾指针分别是 front 和 rear,则当前队列中的元素个数是()。

解析:

知识点讲解:

知识点总结表格:

题目54:在含有 27 个结点的二叉排序树上查找关键字为 35 的结点,则依次比较的关键字序列有可能是()。

解析:

知识点讲解:

知识点总结表格:


题目40:关于二叉排序树的描述不正确的是()。

描述: 以下关于二叉排序树的描述,哪一项是不正确的?

选项:

  • A. 在最坏情况下,利用插入操作构造一棵二叉排序树花费的代价为 O(nlog₂n)
  • B. 二叉排序树的查找效率取决于树的形态
  • C. 在含有 n 个结点的平衡二叉排序树中,查找失败时最多花费代价为 O(log₂n)
  • D. 从二叉排序树中删去一个结点后再重新插入,一定是作为叶子结点插入的

正确答案: A


解析:

选项 A 不正确。在最坏情况下,二叉排序树(BST)会退化成一个链表,这种情况下,每次插入操作需要遍历已有的所有节点,因此构造一棵包含 n 个结点的二叉排序树的代价为 O(n²),而不是 O(nlog₂n)。


知识点讲解:

  1. 二叉排序树(BST)结构

    • 每个节点有一个键值,左子树所有节点的键值小于根节点,右子树所有节点的键值大于根节点。
    • 查找、插入和删除操作的效率取决于树的高度。
  2. 时间复杂度分析

    • 平均情况:对于随机插入的 BST,期望高度为 O(log₂n),因此查找、插入和删除的平均时间复杂度为 O(log₂n)。
    • 最坏情况:当插入的数据是有序的,BST 退化为链表,操作的时间复杂度为 O(n)。
  3. 平衡二叉排序树

    • 如 AVL 树或红黑树,保证树的高度为 O(log₂n),因此操作的时间复杂度始终为 O(log₂n)。
    • 在平衡 BST 中,查找失败的最坏代价也是 O(log₂n)。
  4. 删除和插入操作

    • 删除一个节点后,重新插入时,节点的位置取决于当前树的结构,不一定是叶子节点。

知识点总结表格:

知识点描述相关操作
二叉排序树结构每个节点有一个键值,左子树键值小于根,右子树键值大于根查找、插入、删除
时间复杂度分析根据树的高度,操作的时间复杂度不同最佳和最坏情况的时间复杂度评估
平衡二叉排序树通过旋转等操作保持树的平衡,确保高度为 O(log₂n)AVL 树、红黑树
操作后的节点插入删除后重新插入节点的位置取决于当前树的结构,不定为叶子节点插入操作的灵活性

题目41:线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。

选项:

  • A. 部分的地址必须是连续的
  • B. 连续或不连续都可以
  • C. 必须是连续的
  • D. 一定是不连续的

正确答案: B


解析:

选项 B 正确。链式存储结构通过指针将各个结点链接起来,不要求内存地址必须连续,可以是任何可用的存储地址。这与顺序存储结构不同,后者要求数据元素在内存中连续存放。


知识点讲解:

  1. 存储结构分类

    • 顺序存储结构:数据元素在内存中按顺序连续存放,如数组。
    • 链式存储结构:数据元素通过指针链接,存储地址可以不连续,如链表。
  2. 链式存储的优点

    • 动态分配内存,节省空间。
    • 插入和删除操作效率高,不需要移动其他元素。
  3. 链式存储的缺点

    • 需要额外的存储空间来保存指针。
    • 不支持高效的随机访问。
  4. 适用场景

    • 适用于频繁插入和删除操作的场合。
    • 数据量动态变化较大的情况。

知识点总结表格:

知识点描述相关操作
存储结构分类顺序存储与链式存储的区别数组 vs 链表
链式存储的特点内存地址不需连续,通过指针连接各个结点插入、删除操作
链式存储的优缺点动态分配、插入删除效率高 vs 需要额外指针空间、随机访问低效适用场景分析
动态内存分配根据需要动态分配内存,灵活性高链表、动态数组

题目42:快速排序在( )情况下最易发挥其长处。

选项:

  • A. 被排序的数据完全无序
  • B. 被排序的数据中的最大值和最小值相差悬殊
  • C. 被排序的数据已基本有序
  • D. 被排序的数据中含有多个相同的排序码

正确答案: A


解析:

选项 A 正确。快速排序在数据完全无序时,通过有效的分区操作可以将数据集有效划分,充分发挥其分治策略的优势,达到 O(nlog₂n) 的平均时间复杂度。


知识点讲解:

  1. 快速排序基本原理

    • 选择一个基准元素,通过一趟排序将数据分为两部分,一部分比基准小,另一部分比基准大,然后递归排序两部分。
  2. 快速排序的性能

    • 最佳和平均情况:基准元素将数组大致均匀地分割,时间复杂度为 O(nlog₂n)。
    • 最坏情况:基准元素为最小或最大值,导致递归深度为 O(n),时间复杂度为 O(n²)。
  3. 数据分布对快速排序的影响

    • 完全无序的数据有利于快速排序发挥其分治优势。
    • 已基本有序的数据容易导致快速排序退化为最坏情况,除非使用随机化基准或其他优化策略。
  4. 优化策略

    • 随机选择基准元素。
    • 使用三数取中法选择基准。
    • 在递归深度过大时切换到其他排序算法(如插入排序)。

知识点总结表格:

知识点描述相关操作
快速排序原理分治策略,选择基准元素分割数组选择基准、分区、递归排序
时间复杂度分析平均 O(nlog₂n),最坏 O(n²)最佳、平均与最坏情况分析
数据分布影响数据无序 vs 有序对排序性能的影响基准选择策略、优化措施
快速排序优化策略随机化基准、三数取中、递归深度控制提高排序效率,避免退化

题目44:向一个栈顶指针为 HS 的带头结点链栈中插入一个 s 所指结点时,则执行()。

选项:

  • A. s->next=HS; HS=s;
  • B. HS->next=s;
  • C. s->next=HS->next; HS->next=s;
  • D. s->next=HS; HS=HS->next;

正确答案: C


解析:

选项 C 正确。在带头结点的链栈中,插入新结点时需要将新结点插入到头结点之后。具体操作为:

  1. s->next = HS->next; 将新结点的 next 指向当前栈顶结点。
  2. HS->next = s; 将头结点的 next 指向新结点。

知识点讲解:

  1. 链栈结构

    • 使用链表实现栈,通常带一个头结点。
    • 栈顶由头结点的 next 指针指向。
  2. 插入操作(Push)

    • 创建新结点。
    • 将新结点的 next 指向当前栈顶结点。
    • 更新头结点的 next 指向新结点。
  3. 带头结点的优势

    • 简化插入和删除操作,不需要特殊处理空栈情况。
    • 统一操作逻辑,提高代码简洁性。
  4. 指针操作注意事项

    • 插入前需保存原有指针,避免链表断裂。
    • 确保新结点正确链接到链表中。

知识点总结表格:

知识点描述相关操作
链栈结构使用链表实现栈,带头结点简化操作Push(插入)、Pop(删除)
插入操作(Push)将新结点插入到链栈顶部更新指针,保持链表完整性
带头结点的优势统一操作逻辑,简化空栈处理代码简洁性,操作一致性
指针操作正确维护 next 指针,避免链表断裂结点链接与插入逻辑

题目45:一个栈 ST(最多元素 m0)为满的条件是()。

选项:

  • A. ST->top != 0
  • B. ST->top == m0
  • C. ST->top == 0
  • D. ST->top != m0

正确答案: B


解析:

选项 B 正确。当栈顶指针 top 达到最大容量 m0 时,表示栈已满,不能再插入新元素。


知识点讲解:

  1. 栈的结构

    • 栈是一种“后进先出”(LIFO)的数据结构。
    • 通过栈顶指针 top 来指示当前栈的顶端位置。
  2. 顺序存储栈

    • 使用数组实现栈,栈顶指针 top 用于标识栈顶元素的位置。
    • 栈的容量有限,通常由数组大小决定。
  3. 栈满的判断

    • top 指向数组的最后一个有效位置(即 top == m0)时,栈被认为是满的,无法再进行 push 操作。
  4. 栈的基本操作

    • Push:向栈顶插入元素,需先检查栈是否已满。
    • Pop:从栈顶移除元素,需先检查栈是否为空。

知识点总结表格:

知识点描述相关操作
栈的结构“后进先出”数据结构,通过栈顶指针管理Push、Pop
顺序存储栈使用数组实现,栈顶指针指向当前栈顶元素限定栈容量,判断栈满
栈满的条件栈顶指针达到最大容量 m0top == m0
栈的基本操作插入与删除操作需判断栈的状态确保操作合法性,避免溢出或下溢

题目46:链式存储的存储结构所占存储空间()。

选项:

  • A. 只有一部分,存放结点值
  • B. 只有一部分,存储表示结点间关系的指针
  • C. 分两部分,一部分存放结点值,另一部分存放表示结点间关系的指针
  • D. 分两部分,一部分存放结点值,另一部分存放结点所占单元数

正确答案: C


解析:

选项 C 正确。链式存储结构的每个结点通常包含两部分:

  1. 数据域:存放结点的值。
  2. 指针域:存放指向下一个结点(或前后结点)的指针,用于表示结点间的关系。

知识点讲解:

  1. 链式存储结构

    • 通过指针将各个结点链接起来,形成链表、栈、队列等数据结构。
    • 每个结点包含数据和指针两部分。
  2. 结点结构

    • 数据域(Data):存储具体的数据内容。
    • 指针域(Pointer):存储指向其他结点的地址。
  3. 存储空间分配

    • 每个结点的指针域增加了额外的存储开销,相比顺序存储结构更占用空间。
    • 链式存储的灵活性高,可以动态增减结点。
  4. 应用场景

    • 适用于数据量动态变化、频繁插入和删除操作的场合。
    • 不适合需要频繁随机访问的场景。

知识点总结表格:

知识点描述相关操作
链式存储结构通过指针链接结点,形成链表等结构插入、删除、遍历
结点结构每个结点包含数据域和指针域存储数据和关系
存储空间分配指针域增加了存储开销,但提供了动态性动态内存管理,灵活操作
应用场景适用于动态数据、频繁操作的场合动态链表、栈、队列

题目47:算法分析的主要任务之一是分析()。

选项:

  • A. 算法的功能是否符合设计要求
  • B. 算法是否具有较好的可读性
  • C. 算法的执行时间和问题规模之间的关系
  • D. 算法中是否存在语法错误

正确答案: C


解析:

选项 C 正确。算法分析的主要任务之一是评估算法的执行时间(时间复杂度)和空间(空间复杂度)与问题规模之间的关系,以确定算法的效率和可扩展性。


知识点讲解:

  1. 算法分析的目的

    • 评估算法的效率和资源消耗。
    • 比较不同算法的优劣,选择最适合的算法。
  2. 时间复杂度

    • 描述算法执行时间随着输入规模增长的趋势。
    • 常见表示法包括大 O 表示法(如 O(n)、O(log n)、O(n²))。
  3. 空间复杂度

    • 描述算法在执行过程中所需内存空间随着输入规模增长的趋势。
    • 评估算法的内存效率。
  4. 分析方法

    • 渐近分析:关注输入规模趋近于无限时的行为。
    • 最坏情况、最佳情况和平均情况分析
  5. 其他分析内容

    • 算法的正确性证明。
    • 算法的可读性和可维护性,但这些不是算法分析的主要任务。

知识点总结表格:

知识点描述相关操作
算法分析目的评估算法效率和资源消耗时间复杂度、空间复杂度评估
时间复杂度描述执行时间与输入规模的关系大 O 表示法,如 O(n)、O(log n)
空间复杂度描述内存使用与输入规模的关系评估算法的内存效率
分析方法渐近分析、最坏情况、最佳情况、平均情况选择合适的分析方法
其他分析内容算法正确性、可读性、可维护性但不属于主要分析任务

题目48:快速排序方法在( )情况下,最不利于发挥其长处。

选项:

  • A. 要排序的数据中含有多个相同值
  • B. 要排序的数据已基本有序
  • C. 要排序的数据个数为奇数
  • D. 要排序的数据量太大

正确答案: B


解析:

选项 B 正确。快速排序在数据基本有序时,尤其是选择不当的基准元素,容易退化为 O(n²) 的时间复杂度,导致性能急剧下降。因此,已基本有序的数据最不利于快速排序发挥其优势。


知识点讲解:

  1. 快速排序性能受数据分布影响

    • 数据完全无序时,快速排序能有效分区,达到最佳性能。
    • 数据基本有序时,若基准选择不当,可能导致极端不平衡的分区。
  2. 基准元素选择策略

    • 固定基准:如总是选择第一个或最后一个元素,容易在有序或近有序数据中退化。
    • 随机基准:随机选择基准,降低退化概率。
    • 三数取中:选择首、中、尾三个元素的中位数作为基准,提高分区均衡性。
  3. 优化措施

    • 使用随机化基准选择。
    • 在分区不均衡时,切换到其他排序算法(如堆排序)。
    • 对小规模子数组使用插入排序提高效率。
  4. 大数据量的处理

    • 快速排序适用于大数据量,但需要合理选择基准和优化策略,避免最坏情况。

知识点总结表格:

知识点描述相关操作
快速排序性能影响因素数据分布对快速排序效率的影响数据是否有序,基准选择策略
基准选择策略决定分区的基准元素选择方法固定基准、随机基准、三数取中
快速排序优化措施提高排序效率,避免最坏情况随机化基准、切换算法、混合排序
大数据量处理快速排序在大数据量下的表现与优化合理基准选择,避免退化

题目49:栈结构通常采用的两种存储结构是()。

选项:

  • A. 线性存储结构和非线性存储结构
  • B. 链表存储结构和数组
  • C. 散列方式和索引方式
  • D. 顺序存储结构和链式存储结构

正确答案: D


解析:

选项 D 正确。栈结构通常采用两种存储结构来实现:

  1. 顺序存储结构:使用数组实现,具有固定的大小和高效的随机访问。
  2. 链式存储结构:使用链表实现,具有动态大小和灵活的内存使用。

知识点讲解:

  1. 栈的两种实现方式

    • 顺序存储栈
      • 使用数组存储栈元素。
      • 栈顶指针用于指示当前栈顶位置。
      • 优点:高效的随机访问,缓存友好。
      • 缺点:栈容量固定,可能导致空间浪费或溢出。
    • 链式存储栈
      • 使用链表存储栈元素,每个结点包含数据和指针。
      • 栈顶指针指向链表的头部。
      • 优点:动态大小,灵活内存利用。
      • 缺点:每个结点需要额外的指针空间,访问速度较慢。
  2. 选择存储结构的考虑因素

    • 空间需求:顺序存储适合已知大小且不频繁变化的栈,链式存储适合动态变化的栈。
    • 操作效率:顺序存储在访问局部性上有优势,链式存储在动态操作上更灵活。
  3. 应用场景

    • 顺序存储栈:函数调用栈、表达式求值等。
    • 链式存储栈:需要频繁插入和删除的场合,如浏览器的历史记录。

知识点总结表格:

知识点描述相关操作
栈的实现方式顺序存储和链式存储数组实现 vs 链表实现
顺序存储栈使用数组,固定大小,高效随机访问Push、Pop操作高效
链式存储栈使用链表,动态大小,灵活内存利用动态Push、Pop,内存利用高效
选择存储结构的因素空间需求、操作效率、应用场景根据需求选择合适的存储结构

题目50:采用顺序查找方法查找长度为 n 的线性表时,每个元素的平均查找长度为()。

选项:

  • A. n/2
  • B. n
  • C. (n−1)/2
  • D. (n+1)/2

正确答案: D


解析:

选项 D 正确。顺序查找的平均查找长度为 (n + 1)/2。这是因为在最坏情况下需要查找到第 n 个元素,而平均而言,每次查找需要比较约 (n + 1)/2 次。


知识点讲解:

  1. 顺序查找概述

    • 线性地从第一个元素开始,依次比较,直到找到目标元素或遍历完所有元素。
    • 简单易实现,适用于无序或小规模的数据集。
  2. 平均查找长度(ASL)

    • 定义为成功查找的平均比较次数。
    • 对于等概率的查找情况,ASL = (1 + 2 + ... + n) / n = (n + 1)/2。
  3. 最坏和最佳情况

    • 最佳情况:目标元素是第一个元素,比较次数为 1。
    • 最坏情况:目标元素不存在或是最后一个元素,比较次数为 n。
  4. 顺序查找的应用场景

    • 数据规模较小或无序的情况下。
    • 插入和删除操作频繁的线性表。

知识点总结表格:

知识点描述相关操作
顺序查找概述从头到尾逐个元素比较查找目标元素线性扫描,逐个比较
平均查找长度(ASL)对于等概率查找,ASL = (n + 1)/2计算平均比较次数
查找情况最佳情况 vs 最坏情况比较次数分析
应用场景数据无序、小规模或频繁插入删除的线性表简单实现,适用于特定场合

题目51:设有两个串 S1 和 S2,求 S2 在 S1 中首次出现的位置的运算称作()。

选项:

  • A. 连接
  • B. 模式匹配
  • C. 求子串
  • D. 判断是否相等

正确答案: B


解析:

选项 B 正确。求一个串在另一个串中首次出现的位置的运算称为模式匹配。这涉及查找模式串 S2 在文本串 S1 中的匹配位置。


知识点讲解:

  1. 模式匹配概念

    • 在文本串中查找模式串出现的位置。
    • 基本任务之一,广泛应用于搜索、文本编辑器、DNA序列分析等领域。
  2. 常见的模式匹配算法

    • 暴力匹配:逐个字符比较,时间复杂度 O(nm)。
    • KMP 算法:利用部分匹配表,时间复杂度 O(n + m)。
    • Boyer-Moore 算法:从后向前匹配,跳跃步长优化,平均性能优异。
    • Rabin-Karp 算法:利用哈希函数,适用于多模式匹配。
  3. 模式匹配的应用

    • 文本搜索与替换。
    • 编译器中的词法分析。
    • 数据挖掘与信息检索。
  4. 求子串与模式匹配的区别

    • 求子串通常指提取特定位置的子字符串。
    • 模式匹配指查找子串在主串中的位置。

知识点总结表格:

知识点描述相关操作
模式匹配概念在文本中查找模式串的位置字符串搜索,匹配算法
常见匹配算法暴力匹配、KMP、Boyer-Moore、Rabin-Karp提高匹配效率,降低时间复杂度
应用领域文本编辑、搜索引擎、编译器、DNA序列分析多领域广泛应用
求子串与模式匹配区别求子串是提取,模式匹配是查找操作目的不同

题目52:设高度为 h 的二叉树上只有度为 0 和度为 2 的结点,则此类二叉树中所包含的结点数至少为()。

选项:

  • A. 2^h - 1
  • B. 2h + 1
  • C. h + 1
  • D. 2h

正确答案: A


解析:

选项 A 正确。对于高度为 h 的满二叉树(每个非叶子结点有两个子结点),结点总数为 2^h - 1。这满足题目中所有结点的度为 0 或 2 的条件,因此这是此类二叉树的最小结点数。


知识点讲解:

  1. 二叉树的高度与结点数关系

    • 满二叉树:每个非叶子结点都有两个子结点,结点总数为 2^h - 1。
    • 完全二叉树:除了最后一层外,每层都被完全填满,最后一层从左至右填充。
    • 普通二叉树:结点的分布无特定要求。
  2. 结点的度

    • 度为 0:叶子结点,没有子结点。
    • 度为 2:每个非叶子结点有两个子结点。
    • 度为 1:每个非叶子结点有一个子结点(本题中不允许)。
  3. 最小结点数推导

    • 高度为 h,满足度为 0 或 2 的条件,必须为满二叉树。
    • 结点总数为 2^h - 1。
  4. 应用实例

    • 满二叉树在许多算法中作为理想数据结构,如堆。

知识点总结表格:

知识点描述相关操作
二叉树类型满二叉树、完全二叉树、普通二叉树结点分布与高度关系
结点的度结点的子结点数度为0(叶子)和度为2(双子节点)
高度与结点数关系满二叉树结点数公式为 2^h - 1推导最小结点数
应用实例堆、二叉搜索树等理想结构在算法中的应用

题目53:循环队列用数组存放其元素值 A[0, m−1],已知其头尾指针分别是 front 和 rear,则当前队列中的元素个数是()。

选项:

  • A. rear - front + 1
  • B. rear - front - 1
  • C. (rear - front + m) % m
  • D. rear - front

正确答案: C


解析:

选项 C 正确。循环队列中,当前队列中的元素个数可以通过公式 (rear - front + m) % m 计算。这是因为 rear 可能已经回绕到 front 前面,通过加上队列的大小 m 并取模,确保结果为正数并正确表示元素个数。


知识点讲解:

  1. 循环队列概念

    • 基于数组实现的队列,通过头尾指针循环使用数组空间,避免空间浪费。
    • 当尾指针 rear 到达数组末尾后,下一个元素插入到数组的起始位置。
  2. 队列的满和空状态

    • 空队列front == rear
    • 满队列(rear + 1) % m == front
  3. 元素个数计算

    • 使用公式 (rear - front + m) % m
    • 解释:
      • 如果 rear >= front,则元素个数为 rear - front
      • 如果 rear < front,则元素个数为 rear + (m - front)
  4. 指针操作

    • 入队(Enqueue):在 rear 位置插入元素,rear = (rear + 1) % m
    • 出队(Dequeue):移除 front 位置元素,front = (front + 1) % m

知识点总结表格:

知识点描述相关操作
循环队列概念基于数组实现,头尾指针循环使用数组空间入队、出队操作
队列满与空的判断空队列:front == rear,满队列:(rear + 1) % m == front队列状态判断
元素个数计算公式(rear - front + m) % m适应 rear 回绕的情况
指针操作入队时更新 rear,出队时更新 front模拟环形结构,避免溢出

题目54:在含有 27 个结点的二叉排序树上查找关键字为 35 的结点,则依次比较的关键字序列有可能是()。

选项:

  • A. 18, 36, 28, 46, 35
  • B. 46, 28, 18, 36, 35
  • C. 28, 36, 18, 46, 35
  • D. 46, 36, 18, 28, 35

正确答案: D


解析:

选项 D 正确。该序列符合二叉排序树(BST)的性质,即左子树所有结点小于根结点,右子树所有结点大于根结点。以 46 为根,35 小于 46,进入左子树;然后 36 大于 35,应进入左子树;以此类推,最终找到 35。


知识点讲解:

  1. 二叉排序树(BST)性质

    • 每个节点的左子树中的所有结点的键值小于该节点的键值。
    • 每个节点的右子树中的所有结点的键值大于该节点的键值。
  2. 查找过程

    • 从根节点开始,比较目标关键字与当前结点的关键字。
    • 如果相等,查找成功。
    • 如果目标关键字小于当前结点,进入左子树;否则,进入右子树。
    • 重复上述过程,直到找到目标或达到叶子节点。
  3. 查找比较序列的有效性

    • 比较序列必须符合 BST 的查找路径。
    • 每一步比较决定了下一个访问的子树方向。
  4. 实例分析

    • 选项 D 的比较序列 D. 46, 36, 18, 28, 35:
      • 35 < 46 → 左子树
      • 35 < 36 → 左子树
      • 35 < 18 → 不符合,需调整解释
      • 实际上,原解析有误。正确序列应符合 BST 的性质。

    更正: 重新分析各选项,确保符合 BST 性质。

    • 选项 A: 18, 36, 28, 46, 35

      • 18 为根,35 > 18 → 进入右子树。
      • 36 > 18 → 进入右子树。
      • 28 < 36 → 进入左子树。
      • 46 > 28 → 进入右子树。
      • 35 < 46 → 查找失败。
    • 选项 B: 46, 28, 18, 36, 35

      • 46 为根,35 < 46 → 进入左子树。
      • 28 < 46 → 进入左子树。
      • 18 < 28 → 进入左子树。
      • 36 > 18 → 不符合,继续左子树应无此元素。
    • 选项 C: 28, 36, 18, 46, 35

      • 28 为根,35 > 28 → 进入右子树。
      • 36 > 28 → 进入右子树。
      • 18 < 36 → 进入左子树。
      • 46 > 36 → 进入右子树。
      • 35 < 46 → 查找失败。
    • 选项 D: 46, 36, 18, 28, 35

      • 46 为根,35 < 46 → 进入左子树。
      • 36 < 46 → 进入左子树。
      • 18 < 36 → 进入左子树。
      • 28 > 18 → 进入右子树。
      • 35 > 28 → 进入右子树,找到 35。

    因此,选项 D 是唯一符合 BST 性质的比较序列。


知识点总结表格:

知识点描述相关操作
二叉排序树性质左子树小于根,右子树大于根查找、插入、删除
查找过程从根开始,逐层比较决定进入左子树或右子树递归或迭代查找
比较序列有效性必须符合 BST 的查找路径确保每步比较方向正确
实例分析与验证分析选项中的序列是否符合 BST 的性质正确序列符合查找路径

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值