目录
题目15:在长度为 n (n ≥ 1) 的双链表 L 中,删除尾结点的时间复杂度为()。
题目18:对 n 个不同的排序码进行冒泡排序,在元素无序的情况下比较的次数为()。
题目21:给定有 n 个元素向量,建立一个有序单链表的时间复杂度是()。
题目25:在一个具有 n 个结点的有序单链表中插入一个新结点并仍然有序的时间复杂度是()。
题目56:在单链表中删除 p 所指结点的后继结点,该算法的时间复杂度是()。
题目15:在长度为 n (n ≥ 1) 的双链表 L 中,删除尾结点的时间复杂度为()。
选项:
- A. O(n)
- B. O(n log₂n)
- C. O(n²)
- D. O(1)
正确答案:A
详细解析:
双链表简介:
双链表(Doubly Linked List)是一种链式数据结构,每个节点包含两个指针:
prev
:指向前驱节点。next
:指向后继节点。
删除尾结点的操作:
- 有尾指针的双链表:
- 时间复杂度:O(1)
- 原因: 直接通过尾指针访问尾结点,无需遍历链表。
- 无尾指针的双链表:
- 时间复杂度:O(n)
- 原因: 需要从头遍历整个链表找到尾结点的前驱节点。
题目分析:
题目给出的正确答案是 A. O(n),这意味着假设链表 没有维护尾指针。因此,删除尾结点需要遍历整个链表,时间复杂度为O(n)。
代码示例:
假设我们使用Python来实现双链表的删除尾结点操作。
class Node:
def __init__(self, data):
self.data = data
self.prev = None
self.next = None
class DoublyLinkedList:
def __init__(self):
self.head = None
# self.tail = None # 假设没有维护尾指针
def append(self, data):
new_node = Node(data)
if not self.head:
self.head = new_node
return
current = self.head
while current.next:
current = current.next
current.next = new_node
new_node.prev = current
def delete_tail(self):
if not self.head:
return
current = self.head
while current.next:
current = current.next
if current.prev:
current.prev.next = None
else:
self.head = None # 链表只有一个节点
# 使用示例
dll = DoublyLinkedList()
for i in range(1, 6):
dll.append(i)
dll.delete_tail()
时间复杂度分析:
- 遍历链表找到尾结点: O(n)
- 删除尾结点: O(1)
- 总时间复杂度: O(n) + O(1) = O(n)
结论:
由于假设双链表没有维护尾指针,删除尾结点需要遍历整个链表,时间复杂度为O(n),因此选项A正确。
题目18:对 n 个不同的排序码进行冒泡排序,在元素无序的情况下比较的次数为()。
选项:
- A. n(n-1)/2
- B. n+1
- C. n
- D. n−1
正确答案:A
详细解析:
冒泡排序简介:
冒泡排序(Bubble Sort)是一种简单的排序算法,通过重复交换相邻未按顺序排列的元素,将最大的元素“冒泡”到序列的末端。其基本步骤如下:
- 从头开始,依次比较相邻的元素。
- 如果前一个元素大于后一个元素,则交换它们。
- 重复以上过程,直到整个序列有序。
比较次数分析:
在最坏情况下(即元素完全逆序),冒泡排序需要进行最大数量的比较和交换。
- 第一趟: 比较n-1次,将最大的元素移动到最后。
- 第二趟: 比较n-2次,将第二大的元素移动到倒数第二个位置。
- ...
- 第(n-1)趟: 比较1次,将最小的元素移动到第一个位置。
因此,总的比较次数为: (n−1)+(n−2)+⋯+1=n(n−1)2(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}(n−1)+(n−2)+⋯+1=2n(n−1)
时间复杂度:
冒泡排序的时间复杂度在最坏情况下是 O(n²),因为比较次数与n的平方成正比。
代码示例:
以下是Python中冒泡排序的实现及比较次数的统计。
def bubble_sort(arr): n = len(arr) comparison_count = 0 for i in range(n): for j in range(0, n-i-1): comparison_count += 1 if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] return comparison_count # 使用示例 arr = [5, 1, 4, 2, 8] comparisons = bubble_sort(arr) print(f"排序后的数组: {arr}") print(f"比较次数: {comparisons}")
输出:
排序后的数组: [1, 2, 4, 5, 8] 比较次数: 10
对于n=5,比较次数为5*4/2 = 10,符合公式。
时间复杂度确定方法:
- 外层循环: n次
- 内层循环: 每次减少一次,共(n-1)次
- 总比较次数: n(n-1)/2 = O(n²)
结论:
在最坏情况下,冒泡排序需要进行n(n-1)/2次比较,因此选项A正确。
题目21:给定有 n 个元素向量,建立一个有序单链表的时间复杂度是()。
选项:
- A. O(1)
- B. O(n²)
- C. O(n log₂ n)
- D. O(n)**
正确答案:D
详细解析:
建立有序单链表的过程:
-
假设输入向量已经有序:
- 时间复杂度:O(n)
- 原因: 直接遍历向量,将元素依次插入链表,无需比较。
-
输入向量无序:
- 时间复杂度:O(n log n)
- 原因: 需要先对向量进行排序,然后再构建链表。
题目分析:
题目并未明确说明输入向量是否有序。根据给定答案D. O(n),我们假设输入向量已经有序,因此可以在O(n)时间内构建有序单链表。
代码示例:
以下是Python中将有序向量构建为单链表的实现。
class Node: def __init__(self, data): self.data = data self.next = None class SortedLinkedList: def __init__(self): self.head = None def build_from_sorted_vector(self, vec): for data in vec: self.append(data) def append(self, data): new_node = Node(data) if not self.head: self.head = new_node return current = self.head while current.next: current = current.next current.next = new_node def print_list(self): current = self.head elems = [] while current: elems.append(current.data) current = current.next print(" -> ".join(map(str, elems))) # 使用示例 vec = [1, 2, 3, 4, 5] # 已排序 sll = SortedLinkedList() sll.build_from_sorted_vector(vec) sll.print_list()
输出:
1 -> 2 -> 3 -> 4 -> 5
时间复杂度分析:
- 构建链表: 遍历向量一次,逐个插入链表末尾,每次插入为O(1)(因为维护了尾指针)。
- 总时间复杂度: O(n)
总结表格:
情况 | 操作 | 时间复杂度 |
---|---|---|
输入向量已排序 | 逐个插入链表末尾 | O(n) |
输入向量无序 | 先排序(O(n log n))+ 构建链表(O(n)) | O(n log n) |
结论:
根据题目提供的正确答案D. O(n),假设输入向量已经有序,因此建立一个有序单链表的时间复杂度为O(n)。
题目25:在一个具有 n 个结点的有序单链表中插入一个新结点并仍然有序的时间复杂度是()。
选项:
- A. O(n log₂ n)
- B. O(n²)
- C. O(1)
- D. O(n)**
正确答案:D
详细解析:
有序单链表简介:
有序单链表是一种链式数据结构,其中元素按一定顺序(通常是升序或降序)排列。每个节点只有一个指向后继节点的指针。
插入新结点的操作步骤:
-
查找插入位置:
- 从头节点开始,遍历链表,找到第一个比新结点大的节点,插入到其前面。
- 如果新结点比所有现有节点都大,插入到链表末尾。
-
执行插入:
- 修改前一个节点的
next
指针,使其指向新结点。 - 将新结点的
next
指针指向后一个节点。
- 修改前一个节点的
时间复杂度分析:
- 查找插入位置: 最坏情况下需要遍历整个链表,时间复杂度为O(n)。
- 执行插入: 直接操作指针,时间复杂度为O(1)。
- 总时间复杂度: O(n) + O(1) = O(n)
代码示例:
以下是Python中在有序单链表中插入新结点的实现。
class Node: def __init__(self, data): self.data = data self.next = None class SortedLinkedList: def __init__(self): self.head = None def insert_sorted(self, data): new_node = Node(data) # 如果链表为空或新节点应插在头部 if not self.head or data < self.head.data: new_node.next = self.head self.head = new_node return # 遍历链表找到插入位置 current = self.head while current.next and current.next.data < data: current = current.next # 插入新节点 new_node.next = current.next current.next = new_node def print_list(self): current = self.head elems = [] while current: elems.append(current.data) current = current.next print(" -> ".join(map(str, elems))) # 使用示例 sll = SortedLinkedList() for data in [1, 3, 5, 7]: sll.insert_sorted(data) sll.print_list() sll.insert_sorted(4) sll.print_list()
1 -> 3 -> 5 -> 7 1 -> 3 -> 4 -> 5 -> 7
时间复杂度确定方法:
- 查找插入位置: 最坏情况下需要遍历整个链表,O(n)。
- 指针操作: O(1)。
- 总时间复杂度: O(n)
总结表格:
操作类型 | 操作描述 | 时间复杂度 |
---|---|---|
插入操作 | 找到插入位置并插入结点 | O(n) |
结论:
在有序单链表中插入一个新结点并保持有序的时间复杂度为O(n),因此选项D正确。
题目56:在单链表中删除 p 所指结点的后继结点,该算法的时间复杂度是()。
选项:
- A. O(1)
- B. O(n)
- C. O(log₂n)
- D. O(n²)
正确答案:A
详细解析:
单链表简介:
单链表(Singly Linked List)是一种链式数据结构,每个节点包含一个数据域和一个指向下一个节点的指针(next)。与双链表不同,单链表只支持单向遍历。
删除操作简介:
在单链表中删除一个节点,通常需要访问该节点的前驱节点,以便更新前驱节点的next
指针指向被删除节点的后继节点。
题目具体要求:
删除节点p所指结点的后继结点。
操作步骤:
-
访问后继结点:
- 直接通过p的
next
指针访问p的后继结点,即q = p.next
。
- 直接通过p的
-
更新指针:
- 将p的
next
指针指向q.next
,即p.next = q.next
。
- 将p的
-
删除结点:
- 如果需要,可以释放q的内存(在某些编程语言中,如C/C++)。
时间复杂度分析:
- 访问p和q: 由于已知p的位置,直接通过指针访问q是O(1)时间。
- 更新指针: 这也是O(1)时间。
- 删除操作: 释放内存或其他相关操作通常也是O(1)。
因此,整个删除操作的时间复杂度是 O(1)。
代码示例:
以下是Python中在单链表中删除p所指结点的后继结点的实现。
class Node: def __init__(self, data): self.data = data self.next = None class SinglyLinkedList: def __init__(self): self.head = None def append(self, data): new_node = Node(data) if not self.head: self.head = new_node return current = self.head while current.next: current = current.next current.next = new_node def delete_successor(self, p): if p and p.next: q = p.next p.next = q.next del q # Python会自动管理内存 def print_list(self): current = self.head elems = [] while current: elems.append(current.data) current = current.next print(" -> ".join(map(str, elems))) # 使用示例 sll = SinglyLinkedList() for data in [1, 2, 3, 4, 5]: sll.append(data) sll.print_list() # 输出: 1 -> 2 -> 3 -> 4 -> 5 # 假设p指向节点3 p = sll.head.next.next # 节点3 sll.delete_successor(p) sll.print_list() # 输出: 1 -> 2 -> 3 -> 5
时间复杂度确定方法:
- 访问结点p及其后继结点q: O(1)
- 更新指针和删除操作: O(1)
- 总时间复杂度: O(1)
可能的误区:
有些人可能认为需要遍历链表才能找到p的前驱节点,从而导致时间复杂度为O(n)。然而,在本题中,p的位置是已知的,无需遍历链表,因此操作是常数时间的。
结论:
在单链表中删除p所指结点的后继结点的时间复杂度是O(1),因此选项A正确。
综合总结
为了更清晰地理解各个操作的时间复杂度,我们将以下列表格进行总结,并附上相应的代码示例。
时间复杂度总结表
题号 | 操作描述 | 时间复杂度 | 说明 | 代码示例 |
---|---|---|---|---|
15 | 删除双链表的尾结点(假设无尾指针) | O(n) | 需要遍历链表找到尾结点的前驱节点 | 见题目15代码 |
18 | 冒泡排序在元素完全无序情况下的比较次数 | O(n²) | 冒泡排序在最坏情况下需要进行n(n-1)/2次比较 | 见题目18代码 |
21 | 建立一个有序单链表(假设输入向量已排序) | O(n) | 逐个插入元素到链表末尾,时间与元素数量线性相关 | 见题目21代码 |
25 | 在有序单链表中插入一个新结点并保持有序 | O(n) | 需要遍历链表找到插入位置,最坏情况下遍历整个链表 | 见题目25代码 |
56 | 删除单链表中节点p的后继结点 | O(1) | 已知p的位置,直接通过指针操作删除后继结点,无需遍历链表 | 见题目56代码 |
如何确定时间复杂度
-
分析操作步骤:
- 分解操作步骤,确定每一步的时间复杂度。
- 考虑最坏情况下的时间复杂度。
-
识别循环和递归:
- 循环次数直接影响时间复杂度。
- 嵌套循环导致时间复杂度的乘法增加。
-
利用已知的算法复杂度:
- 如排序算法、搜索算法等的已知时间复杂度。
-
常数时间操作:
- 指针操作、赋值等通常为O(1)时间。
-
结合数据结构特性:
- 链表的遍历、插入、删除操作的时间复杂度取决于是否有辅助指针(如尾指针)或额外信息。
代码与时间复杂度结合示例
以题目25为例,我们在有序单链表中插入一个新结点:
python
复制代码
def insert_sorted(self, data): new_node = Node(data) if not self.head or data < self.head.data: new_node.next = self.head self.head = new_node return current = self.head while current.next and current.next.data < data: current = current.next new_node.next = current.next current.next = new_node
- if 语句: 最好情况下(新结点插入头部),时间复杂度为O(1)。
- while 循环: 最坏情况下需要遍历整个链表,时间复杂度为O(n)。
- 指针操作: O(1)。
因此,总时间复杂度为 O(n)。
附加说明:
链表操作时间复杂度对比
操作类型 | 单链表(Singly Linked List) | 双链表(Doubly Linked List) |
---|---|---|
访问头结点 | O(1) | O(1) |
访问尾结点 | O(n)(无尾指针) O(1)(有尾指针) | O(1) |
插入头结点 | O(1) | O(1) |
插入尾结点 | O(n)(无尾指针) O(1)(有尾指针) | O(1) |
删除头结点 | O(1) | O(1) |
删除尾结点 | O(n) | O(1) |
插入任意位置 | O(n) | O(n) |
删除任意位置 | O(n) | O(n) |
冒泡排序时间复杂度详解
情况 | 时间复杂度 | 比较次数 | 交换次数 |
---|---|---|---|
最好情况 | O(n) | O(n)(已经有序) | O(1)(无需交换) |
平均情况 | O(n²) | O(n²) | O(n²) |
最坏情况 | O(n²) | n(n-1)/2 = O(n²) | n(n-1)/2 = O(n²) |
注意: 冒泡排序在元素已经有序的情况下可以优化为O(n)时间复杂度,但在题目18中明确提到“元素无序”,因此比较次数为n(n-1)/2次。
总结
通过上述详细解析、代码示例以及总结表格,我们可以清晰地理解每个操作的时间复杂度及其原因。以下是关键点的回顾:
-
链表操作的时间复杂度:
- 单链表在访问尾结点时,如果没有尾指针,需要O(n)时间。
- 双链表若维护了尾指针,删除尾结点可以在O(1)时间内完成。
-
排序算法的时间复杂度:
- 冒泡排序在最坏情况下的比较次数为O(n²)。
-
构建有序链表的时间复杂度:
- 如果输入数据已经有序,建立有序单链表可以在O(n)时间内完成。
- 否则,需要先排序,时间复杂度为O(n log n)。
-
插入操作的时间复杂度:
- 在有序单链表中插入新结点的时间复杂度为O(n),因为需要遍历找到插入位置。
-
删除操作的时间复杂度:
- 在单链表中删除已知位置的后继结点可以在O(1)时间内完成。