目录
23. 所有内排序算法中的比较次数与初始元素序列的排列无关。
25. 若用“队头指针的值和队尾指针的值相等”作为循环队列为空的标志,则在设置一个空队列时,只需给队头指针和队尾指针赋同一个值,不管什么值都可以。
26. 顺序队中有多少元素,可以根据队头指针和队尾指针的值来计算。
27. 二叉树为二叉排序树的充分必要条件是其任一结点的值均大于其左孩子的值,小于其右孩子的值。
28. 在队空间大小为 n 的循环队列中,最多只能进行 n 次进队操作。
31. 对 n 个元素进行冒泡排序,只有在初始元素反序时,冒泡排序移动元素的次数才会达到最大值。
33. 顺序队采用数组存放队中元素,数组具有随机存取特性,所以顺序队中可以随机存取元素。
35. 数据序列为 R1, R2, ..., Rn,关键字相同,采用某种排序方法后变为 Rn, Rn-1, ..., R1,则该排序算法是稳定的。
21. 树中元素之间是多对多的关系。
正确答案:错
解释:
-
树形结构是分层结构,每个结点与其父结点之间存在一对一的关系。
-
在树中,每个子结点最多只能有一个父结点,因此树的结点之间不可能是多对多关系。树形结构是一种父子关系,而不是多对多的关联。
例如: 对于下面的树:
mathematica
复制代码
A / \ B C / \ D E
B
和C
都是A
的子结点,但B
和C
没有共同的父结点,树的关系是层次化的,每个结点只有一个父结点。
22. 二路归并排序算法是稳定的。
正确答案:对
解释:
-
二路归并排序是一种稳定排序算法。在排序过程中,如果两个元素相等,它们在原始数组中的相对顺序会被保留。
-
归并排序是通过将数组递归分割成更小的部分,并将这些部分合并排序来实现的。合并过程中,如果遇到相等的元素,归并排序会保留它们原来的顺序。
例如: 假设我们有数组
[5, 2, 5, 1]
,我们按照二路归并排序排序:- 初始数组:
[5, 2, 5, 1]
- 排序后:
[1, 2, 5, 5]
,两个5
保持原有的相对顺序,因此它是稳定的排序。
- 初始数组:
23. 所有内排序算法中的比较次数与初始元素序列的排列无关。
正确答案:错
解释:
-
内排序算法的比较次数通常与初始元素的排列有关。例如,快速排序、冒泡排序等,都会受到初始元素序列排列的影响。
- 在快速排序中,如果初始数组已经有序,则最坏情况下的时间复杂度是 O(n²)。
- 在冒泡排序中,若数组已排序,则比较次数减少,但最坏情况下的比较次数仍然为 O(n²)。
例如:
- 在最坏情况下(如数组已反向排列),冒泡排序的比较次数最多。
- 在最好的情况下(如数组已排序),快速排序的比较次数也会有所不同。
24. 非空二叉树的先序序列的最后一个结点一定是叶子结点。
正确答案:对
解释:
-
在先序遍历中,访问顺序是根-左-右。当遍历到最后一个结点时,该结点是最右的结点(没有右子结点),并且是叶子结点。因此,先序遍历的最后一个结点通常是一个叶子结点。
例如: 对于如下二叉树:
css
复制代码
A / \ B C / D
- 先序遍历的顺序是:
A, B, D, C
- 最后一个访问的结点是
C
,它是一个叶子结点。
- 先序遍历的顺序是:
25. 若用“队头指针的值和队尾指针的值相等”作为循环队列为空的标志,则在设置一个空队列时,只需给队头指针和队尾指针赋同一个值,不管什么值都可以。
正确答案:对
解释:
-
在循环队列中,使用队头指针和队尾指针相等作为队列为空的标志。
-
由于队列的特点(循环结构),队头和队尾指针相等并不能直接表明队列已满,因为队头和队尾可能会重合在队列的空闲位置。因此,队列为空时,只需要将队头指针和队尾指针设置为相同的值即可。
例如: 假设队列长度为
n
,初始化时可以设置队头和队尾都指向某个固定位置(如0
或-1
),在空队列状态下,两者相等就可以判断队列为空。
知识点总结表格
问题 | 答案 | 解析 |
---|---|---|
树中元素之间是多对多的关系吗? | 错 | 树是分层结构,每个结点与父结点之间是一对一关系。 |
二路归并排序是否是稳定的? | 对 | 二路归并排序在合并时,相等元素保持原有顺序,因此是稳定排序。 |
所有内排序算法中的比较次数与初始元素排列是否无关? | 错 | 比较次数与初始元素排列有关,如快速排序和冒泡排序的比较次数与输入序列有关。 |
非空二叉树的先序序列的最后一个结点是否一定是叶子结点? | 对 | 先序遍历的最后一个结点通常是最右的结点且为叶子结点。 |
循环队列为空的标志是否只需队头和队尾指针相等即可? | 对 | 队头和队尾指针相等可以作为循环队列为空的标志。 |
关键点总结
- 树中结点之间是一对一的关系,而不是多对多的关系。
- 二路归并排序是稳定的排序算法,保证相等元素的顺序不变。
- 内排序的比较次数与初始元素排列有关,排序的效率依赖于数据的初始顺序。
- 先序遍历的最后一个结点通常是叶子结点。
- 循环队列为空时,可以通过队头和队尾指针相等来判断队列是否为空。
26. 顺序队中有多少元素,可以根据队头指针和队尾指针的值来计算。
正确答案:对
解释:
-
在顺序队列中,队头指针
元素个数=(rear−front+队列大小)%队列大小\text{元素个数} = (\text{rear} - \text{front} + \text{队列大小}) \% \text{队列大小}元素个数=(rear−front+队列大小)%队列大小front
和队尾指针rear
可以用来计算队列中的元素个数。具体计算方法为:这样计算是因为队列是循环结构,当
rear
指针越过队列末尾时,会从头部重新开始,因此需要使用模运算来处理循环。例如: 假设队列大小为 5,队头指针
元素个数=(4−2+5)%5=2\text{元素个数} = (4 - 2 + 5) \% 5 = 2元素个数=(4−2+5)%5=2front
为 2,队尾指针rear
为 4,元素个数为:
27. 二叉树为二叉排序树的充分必要条件是其任一结点的值均大于其左孩子的值,小于其右孩子的值。
正确答案:错
解释:
-
二叉排序树(又称为二叉搜索树,BST)的条件是:对于任意结点,其左子树的所有结点值均小于该结点的值,右子树的所有结点值均大于该结点的值。
-
在题目中所描述的条件,只涵盖了一个结点的值与其直接左右孩子的关系,但忽略了左子树和右子树的递归约束。
正确条件: 对于二叉排序树的每个结点,其左子树中所有结点的值必须小于该结点的值,右子树中所有结点的值必须大于该结点的值。
例如:
markdown
复制代码
10 / \ 5 15 / \ \ 3 7 20
在上面的二叉排序树中,结点
10
的左子树[5, 3, 7]
都小于10
,右子树[15, 20]
都大于10
,并且这种关系在每个子树上都递归成立。
28. 在队空间大小为 n 的循环队列中,最多只能进行 n 次进队操作。
正确答案:错
解释:
-
循环队列使用队头指针
front
和队尾指针rear
来管理元素。为了避免队头和队尾指针重合(无法区分队列为空和队列满的情况),需要保证至少有一个空位。因此,在队列空间大小为n
时,队列最多只能存储 n-1 个元素。例如: 假设队列大小为
n = 5
,在循环队列中最多只能有4
个元素。当front == rear
时,表示队列为空或者队列已满,但无法区分这两种情况,所以必须保证一个空位置。
29. n 个元素进队的顺序和出队的顺序总是一致的。
正确答案:对
解释:
-
队列是一种先进先出(FIFO, First In First Out)的数据结构,意味着先进入队列的元素先被出队,后进入的元素后出队。因此,进队顺序和出队顺序总是保持一致。
例如: 如果按顺序进队元素
1, 2, 3, 4
,那么出队时的顺序就是1, 2, 3, 4
,保持了先进入先出的原则。
30. 连通图的生成树包含了图中所有顶点。
正确答案:对
解释:
-
生成树是一个图的子图,包含图中的所有顶点,并且是一个无环连通的树。生成树所包含的边数是
n - 1
(其中n
是图中顶点的数量),同时它保持图的连通性。 -
生成树不会包含图中所有的边,而是通过最少的边来保证所有顶点之间仍然是连通的。
例如: 对于一个图:
mathematica
复制代码
A -- B -- C | | D -- E
其中包含五个顶点(
A
,B
,C
,D
,E
)。一个可能的生成树是:css
复制代码
A -- B -- C | D
这棵生成树包含了图中的所有顶点,但只使用了
4
条边(少于原图的边数)。它保持了连通性,且无环。
知识点总结表格
问题 | 答案 | 解析 |
---|---|---|
顺序队中如何根据队头指针和队尾指针计算元素个数? | 对 | 计算公式为 (rear - front + 队列大小) % 队列大小 。 |
二叉树为二叉排序树的条件是什么? | 错 | 每个结点的左子树小于该结点,右子树大于该结点,并且递归成立。 |
在循环队列中,最多可以存储多少元素? | 错 | 队列空间为 n ,最多存储 n-1 个元素。 |
队列中进队顺序和出队顺序是否一致? | 对 | 队列是先进先出的结构,因此顺序一致。 |
连通图的生成树是否包含所有顶点? | 对 | 生成树是连通图的子图,包含所有顶点且是无环的树。 |
关键点总结
35. 数据序列为 R1, R2, ..., Rn,关键字相同,采用某种排序方法后变为 Rn, Rn-1, ..., R1,则该排序算法是稳定的。
正确答案:错
解释:
知识点总结表格
问题 | 答案 | 解析 |
---|---|---|
冒泡排序在初始元素反序时的移动次数是否达到最大值? | 对 | 完全反序时,冒泡排序需要最多的交换操作。 |
n 个元素通过队列,出队序列是否唯一? | 对 | 队列是 FIFO 结构,出队顺序固定且唯一。 |
顺序队列是否能随机存取元素? | 错 | 顺序队列只能按 FIFO 规则操作,不能随机访问。 |
树中每个结点是否都有唯一的前趋结点? | 错 | 根结点没有前趋结点,其他结点的前趋结点不一定唯一。 |
排序后相同关键字的元素顺序是否保持不变,是否说明排序算法是稳定的? | 错 | 排序后相同元素顺序变化则排序算法不稳定。 |
关键点总结
- 循环队列通过
front
和rear
计算元素个数,但由于要区分队列为空和队列满,最大只能存储n-1
个元素。 - 二叉排序树的条件是所有左子树结点小于根,右子树结点大于根,且这一条件递归适用于所有子树。
- 队列是先进先出的数据结构,保证进队顺序和出队顺序一致。
- 生成树是图的子图,包含所有顶点,保证连通性且无环。
31. 对 n 个元素进行冒泡排序,只有在初始元素反序时,冒泡排序移动元素的次数才会达到最大值。
正确答案:对
解释:
-
冒泡排序的最坏情况发生在数据完全反序时。这时每一趟排序都需要将一个最大值(或最小值)冒泡到序列的末尾,因此需要进行最多的交换操作。在每一趟排序中,都会有两个相邻的元素进行比较和交换,直到最小(或最大)元素冒泡到正确的位置。
例如:假设有一个包含 5 个元素的数组
[5, 4, 3, 2, 1]
,它是完全反序的,冒泡排序的交换次数是最多的,因为每一趟都需要对所有元素进行比较和交换。 -
32. n 个元素通过一个队列,其出队序列是唯一的。
正确答案:对
解释:
-
队列是一种先进先出(FIFO,First In First Out)数据结构。在队列中,元素按照入队顺序被出队,因此其出队序列是固定和唯一的。
例如: 如果有一个队列序列
[A, B, C, D]
,那么出队的顺序一定是A -> B -> C -> D
,无论怎么查看队列,其出队顺序都是一样的。 -
33. 顺序队采用数组存放队中元素,数组具有随机存取特性,所以顺序队中可以随机存取元素。
正确答案:错
解释:
-
顺序队列是基于数组实现的,虽然数组本身具有随机存取的特性,但队列是按先进先出(FIFO)的规则操作的。也就是说,元素只能按照队列的顺序进行出队和入队操作,不能直接随机访问任意元素。
例如: 对于一个顺序队列,如果
front
指针指向队头,rear
指针指向队尾,元素只能从队头出队,不能直接访问队中的其他元素。 -
34. 树中每个结点都有唯一的前趋结点。
正确答案:错
解释:
-
在树结构中,根结点没有前趋结点,因为它是树的起始结点。
-
除根结点外,其他结点的前趋结点是唯一的,但在树的不同结构中,某些结点可能没有前趋结点,例如在特定的层次结构中,某些结点可能没有父结点。对于有多个根的树或者森林中的某些树,根结点仍然没有前趋结点。
例如: 对于一棵树:
css
复制代码
A / \ B C / D
- 结点
A
没有前趋结点(它是根结点)。 - 结点
B
和C
有唯一的前趋结点A
。 - 结点
D
有唯一的前趋结点B
。
- 结点
-
稳定排序算法的定义是:在排序过程中,如果有两个元素的关键字相同,排序后它们的相对顺序应该保持不变。也就是说,稳定排序不会改变相同元素之间的原始相对顺序。
-
在题目中,排序前后相同关键字的元素顺序发生了变化(从
R1, R2, ..., Rn
排列变为Rn, Rn-1, ..., R1
),这说明该排序算法是不稳定的。例如:
- 如果原始序列中,
R1
和R2
是相同的元素且顺序是R1
在前,R2
在后,稳定排序会保持这个顺序,而不稳定排序则可能交换它们的位置,改变原始顺序。
- 如果原始序列中,
- 冒泡排序在元素完全反序时,交换操作次数最多。
- 队列具有先进先出(FIFO)特性,出队顺序是固定的且唯一。
- 顺序队列按队列规则操作,不能随机存取元素。
- 树结构中的根结点没有前趋结点,其他结点的前趋结点可能因树结构不同而无前趋结点。
- 稳定排序算法保证相同关键字元素的相对顺序不变,不稳定排序则可能改变顺序。