深度学习实战14(进阶版)-手写文字OCR识别,手写笔记也可以识别了

本文介绍了一种手写OCR识别项目,利用paddlehub进行初步识别,并探讨了手写识别的难点,如汉字类别多、书写随意性大、个人风格差异。通过优化,如使用PP-OCRv3模型,识别率可提升至54%。提供了公开数据集资源及训练方法,适合进一步改善识别效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI,今天给大家带来手写OCR识别的项目。手写的文稿在日常生活中较为常见,比如笔记、会议记录,合同签名、手写书信等,手写体的文字到处都有,所以针对手写体识别也是有较大的需求。

目录

一、手写文字识别

手写文字识别现状

1. 汉字字符级别的类别较多

2. 手写体字符的书写随意性较大

3. 数据采集与噪声

4. 技术应对策略

二、手写文字识别实现

三、手写文字识别模型

手写识别测试

 识别结果


一、手写文字识别

手写文字识别现状

手写文字识别,尤其是中文汉字的识别,确实是一个极具挑战性的任务。以下是对手写体识别现状及其难点的一些深入探讨:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值