大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用4-目标检测任务,利用Faster Rcnn+Resnet50+FPN模型对目标进行预测,目标检测是计算机视觉三大任务中应用较为广泛的,Faster R-CNN 是一个著名的目标检测网络,其主要分为两个模块:Region Proposal Network (RPN) 和 Fast R-CNN。我将会详细介绍使用 ResNet50 作为基础网络并集成 FPN(Feature Pyramid Network)的 FasterRCNN 模型。这个模型可以写为 fasterrcnn_resnet50_fpn
。
目录
今天我来实现一下这个功能,每个人都可以操作,代码直接运行。
一、模型结构
1.ResNet50
ResNet是一个深度卷积神经网络,它利用残差块解决了训练过程中的梯度消失问题。ResNet50表示具有50层深度的ResNet模型。这个模型负责从原始图像提取特征。
2.FPN
FPN是一种特征处理架构,它生成多尺度的特征图来处理目标检测中不同大小的物体。FPN在卷积神经网络后面添加额外层来融合不同分辨率的特征,这有助于提高物体检测的准确性。
3.RPN
这是一个小型卷积网络,它在FPN生成的多尺度特征图上运行。RPN的主要目的是为下游的 Fast R-CNN 生成目标的候选框(Region of Interest,简称 RoI)。这是目标检测任务的第一阶段,RPN利用滑动窗口生成多个候选框,它会在不同尺度和纵横比的锚点上生成边界框。
4.Fast R-CNN
该模块接收 RPN 生成的候选框,利用 RoI Align,从不同尺度的特征金字塔图上提取特征,然后使用全连接层进行分类和边框回归。Fast R-CNN 输出检测到的目标类别及其边框位置。
二、模型原理
目标检测过程
特征提取(ResNet50)-> FPN -> RPN -> RoI -> Fast R-CNN。首先,Res