多模态学习的背景与挑战
多模态学习旨在让模型同时理解和融合来自不同模态(如图像和文本)的信息,以获得更全面的语义理解。在人类认知中,我们习惯将视觉、语言、听觉等多种信息共同处理,因此发展能够整合多模态数据的人工智能模型具有重要意义。近几年,随着深度学习在计算机视觉和自然语言处理领域的突破,研究者开始探索将视觉和语言模态进行联合预训练,希望模型能从海量未标注的图文数据中学习通用表示,从而在下游任务(例如视觉问答、图像字幕生成、跨模态检索等)中取得更佳性能。
然而,多模态学习面临诸多挑战:首先,不同模态的数据异构性很高——图像以像素网格或视觉特征表示,文本以离散的单词序列表示,两者的数据分布和语义表达方式截然不同,这使得模型很难在统一表示空间直接对齐。其次,模态间的信息丰富度不平衡:一幅图像往往包含丰富的细节,而对应的文本描述可能只提及其中一部分关键信息;反之,文本可能包含图像无法直接呈现的抽象概念。这种信息不对称导致语义一致性对齐变得困难。再次,将两个模态的数据融合后,模型的参数空间巨大,训练需要克服计算资源和高维优化的困难。此外,如何在融合过程中