NLP高频面试题(三十七)——大模型训练和推理的显存估计

在训练和推理大型语言模型时,显存(GPU 内存)的需求是一个关键考虑因素。准确估计这些需求有助于选择合适的硬件配置,确保模型高效运行。

推理阶段的显存需求

在推理过程中,显存主要用于存储模型权重和中间激活值。模型权重的显存需求可以通过以下公式估算:

模型权重显存 = 参数数量 × 每个参数的字节数

例如,对于一个具有 70 亿(7B)参数的模型:

  • FP32(32 位精度):7B × 4 字节 = 28 GB
  • FP16(16 位精度):7B × 2 字节 = 14 GB
  • INT8(8 位量化):7B × 1 字节 = 7 GB
  • INT4(4 位量化):7B × 0.5 字节 = 3.5 GB

此外,中间激活值的显存需求取决于批量大小(batch size)、序列长度(sequence length)等因素。通常情况下,推理阶段的中间激活值占用的显存相对较小,但在处理长序列或大批量数据时,需要额外考虑这部分的显存消耗。

训练阶段的显存需求

训练过程中的显存需求更为复杂,主要包括以下部分:

  1. 模型权重:与推理阶段相同,用于存储模型的参数。
  2. 梯度:每个参数在反向传播时需要存储对应的梯度,通常与模型权重占用相同的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值