基于Keras的生成对抗网络(4)——利用Keras搭建ACGAN生成手写体数字并贴上标签

这篇博客介绍了ACGAN,一种结合了DCGAN和CGAN优点的生成对抗网络,能够在生成图像的同时进行分类。文章详细讲解了ACGAN的结构、优点,并提供了使用Keras实现ACGAN的生成器、判别器和训练函数的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、前言

上两篇文章分别介绍了DCGAN 和CGAN的基本原理和代码示例,同时也反映出二者的一些缺点,比如DCGAN无法为图像添加标签进行分类,CGAN生成图像效果不好等。这一篇就来一下DCGAN与CGAN的综合版本——ACGAN。

一、ACGAN介绍及其结构

1.1 ACGAN介绍

ACGAN全称Auxiliary Classifier GAN,是在CGAN基础上的扩展,通过对判别器进行改进实现了图像分类的功能,论文链接:https://arxiv.org/abs/1610.09585
原始GAN网络的功能比较简单:输入噪声数据,输出伪造图片。而后CGAN发现可以通过给GAN的生成器添加辅助信息(比如类别标签),来实现生成图片类别的精确控制。本文介绍的ACGAN是在CGAN基础上的进一步拓展,采用辅助分类器(Auxiliary Classifier)使得GAN获取的图像分类的功能。

1.2 ACGAN结构

ACGAN结构如下:
在这里插入图片描述

ACGAN的损失函数分为了判别损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wendy_ya

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值