Google Colab 零基础入门教学

目录

​编辑

Google Colab 零基础入门教学

一、Google Colab 是什么?

二、如何开始使用?

三、界面介绍

四、第一行代码

五、文本和代码混写的好处

六、文件上传与读取

七、安装第三方库

八、使用 GPU 或 TPU 加速

九、保存与分享

十、适合做什么?

入门案例

第一例:打招呼,确认代码能运行

第二例:Python 基础语法练习

第三例:画一张图(数据可视化)

📁 第四步:读取并查看CSV文件(数据分析入门)

🤖 第五步:简单的机器学习模型(预测房价)

小结


Google Colab 零基础入门教学

一、Google Colab 是什么?

先来简单说说 Google Colab 是个什么东西。

        你可以把它理解为一个“网页版的 Python 编程环境”。不需要安装任何软件,只要你有一个 Google 账号,就可以打开一个页面,开始写代码、运行代码,甚至还能画图、做机器学习实验。

        它有点像 Jupyter Notebook,但运行在云端。也就是说,就算你的电脑配置一般,也可以做很复杂的任务,因为 Google 会“借你电脑用”,例如现在就可以免费的使用英伟达的T4显卡,非常爽啊现在二手还要卖5999呢。

二、如何开始使用?

        要使用 Google Colab,第一步你需要有一个 Google 账号,就是你用来登录 Gmail 的那个账号。如果没有,可以去 https://accounts.google.com/ 注册一个(我想这一步就能难到百分之九十九的人了,因为需要科学上网和科学注册)。

接着打开网址:https://colab.research.google.com/

进去之后你会看到几个选项,比如:

  • 新建笔记本(New Notebook)

  • 打开已有的文件

  • 最近打开过的笔记本

我们点“新建笔记本”就可以开始写代码了。

 

三、界面介绍

打开之后,界面大致分成三部分:

  • 左上是文件名,可以点击修改,比如改成“第一次写代码”

  • 中间是代码区域,每一块叫一个“代码单元格”(Code Cell)

  • 左边有一个小箭头,点开后能看到文件夹(你可以上传自己的文件)和变量状态

        每个单元格就像一个小编辑器,你可以写 Python 代码,然后点左边的播放按钮(或按 Ctrl+Enter)来运行。

四、第一行代码

来,先写点简单的:

print("Hello, Colab!")

按下 Ctrl + Enter,就会在下方输出:

Hello, Colab!

        是不是很像一个线上编程软件?和你用 Python 编译器的感觉差不多,最主要的是你根本不需要自己配置Python环境,他已经自带了Python和Python3的环境还有pytorch和cuda。

        Colab 可以一行一行地运行代码,这样做有一个好处:你可以分步骤调试、观察结果,非常适合学习和实验。

五、文本和代码混写的好处

        Colab 支持文字和代码穿插在一起写。点击左上“+文本”,就能添加 Markdown 格式的说明。

        这意味着你可以一边写文字,一边解释你要做什么,然后写代码,这让整个笔记本看起来更有逻辑,也更方便复习。也就是相当于注释了

比如:

## 本节目标 - 学会使用 print() - 理解变量的概念

这对于整理学习笔记、写作业,甚至做演示,都很实用。

六、文件上传与读取

        如果你有自己的数据文件(比如 Excel、CSV、图片),可以点左边的小文件夹,然后点上传,把文件传到 Colab 上。

        例如上传一个名为 data.csv 的文件之后,你就可以用 Pandas 来读取它:

import pandas as pd

df = pd.read_csv('data.csv')
df.head()

        

        而且还能一键生成统计图表。

        不过要注意的是,Colab 会默认把你上传的文件保留一段时间,但如果你重新打开笔记本,之前上传的东西可能会消失(几乎是百分百消失),要重新上传。

七、安装第三方库

        有时候你需要用一些额外的工具,比如 matplotlibscikit-learn,Colab 已经预装了很多常用的库。但如果你想装点别的,可以直接用 pip:

!pip install openpyxl

        注意前面加了个感叹号 !,这表示你要在 Colab 里执行一个命令行指令。

八、使用 GPU 或 TPU 加速

Colab 最厉害的地方之一是:它免费给你用 GPU 和 TPU(虽然时间有限)。

你可以点击顶部菜单:

代码执行程序(Runtime) > 更改运行时类型(Change runtime type) > 选择 GPU

 

        之后你运行的代码就可以用到 GPU 加速了,非常适合跑神经网络、深度学习等项目。

九、保存与分享

        Colab 的文件可以保存在 Google Drive 里,不用担心丢失。具体如何使用 Google Drive 保存文件以及快速下载文件(沟槽的colab下载速度几乎可以忽略不计)可以看我的另一篇文章链接如下:

如何快速的从Google colab 中下载文件(亲测好用)-CSDN博客

十、适合做什么?

Colab 非常适合以下用途:

  • 初学者练习 Python(完全可以当作入门工具)

  • 做数据分析(支持 Pandas、Matplotlib 等)

  • 跑机器学习模型(支持 TensorFlow、PyTorch)

  • 写教学文档、项目笔记、作业报告

它的优势就是:一站式环境 + 免费计算资源 + 可视化结果 + 随时保存 + 云端同步


入门案例

第一例:打招呼,确认代码能运行

# 输出一句话,确认代码能正常执行
print("你好,Colab!欢迎学习 Python 🚀")

第二例:Python 基础语法练习

# 定义变量
name = "小明"
age = 18

# 输出信息
print(f"{name} 今年 {age} 岁啦")

# 简单的计算
a = 5
b = 3
sum_ = a + b
print("5 + 3 =", sum_)

# 判断语句
if age >= 18:
    print("成年了")
else:
    print("未成年")

 


第三例:画一张图(数据可视化)

# 导入画图工具
import matplotlib.pyplot as plt

# 模拟一些数据
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]

# 画图
plt.plot(x, y, marker='o')
plt.title("简单的折线图")
plt.xlabel("X轴")
plt.ylabel("Y轴")
plt.grid(True)
plt.show()

 


📁 第四步:读取并查看CSV文件(数据分析入门)

  1. 先上传一个文件(比如 data.csv

  2. 然后运行下面的代码查看内容:

# 导入pandas库
import pandas as pd

# 读取CSV文件(先在左边上传data.csv)
df = pd.read_csv("data.csv")

# 显示前几行
df.head()


🤖 第五步:简单的机器学习模型(预测房价)

# 使用sklearn中的线性回归模型来预测房价
from sklearn.linear_model import LinearRegression

# 假设我们的数据是:面积(㎡) vs 房价(万元)
area = [[50], [60], [70], [80], [90]]
price = [100, 120, 140, 160, 180]

# 建立模型
model = LinearRegression()
model.fit(area, price)

# 预测100㎡房子的价格
predicted = model.predict([[100]])
print(f"预测100㎡房子的价格为:{predicted[0]:.2f} 万元")

 


小结

        Google Colab 是一个适合学习、实验、展示的在线 Python 工具。它门槛低、上手快,特别适合刚开始学 Python 的同学使用。

        你只需要会一点点代码,就能写出完整的实验过程,并且把结果清晰地展示出来。

        下一步你可以试试导入库、画图,或者上传一个 Excel 表格做点简单的数据处理——一步一步探索,Colab 会成为你学习编程的好帮手。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WenJGo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值