DQN 倒立摆 简单程序
时间: 2023-10-17 11:05:13 浏览: 152
好的,以下是使用 DQN(Deep Q-Network)算法来解决倒立摆问题的示例程序,使用 Python 和 TensorFlow 库:
```python
import gym
import tensorflow as tf
import numpy as np
# 定义神经网络模型
class DQN:
def __init__(self, env):
self.input_size = env.observation_space.shape[0]
self.output_size = env.action_space.n
self.hidden_size = 32
self.learning_rate = 0.1
self.X = tf.placeholder(tf.float32, [None, self.input_size], name="input_x")
W1 = tf.get_variable("W1", shape=[self.input_size, self.hidden_size], initializer=tf.contrib.layers.xavier_initializer())
layer1 = tf.nn.relu(tf.matmul(self.X, W1))
W2 = tf.get_variable("W2", shape=[self.hidden_size, self.output_size], initializer=tf.contrib.layers.xavier_initializer())
self.Qpred = tf.matmul(layer1, W2)
self.Y = tf.placeholder(shape=[None, self.output_size], dtype=tf.float32)
self.loss = tf.reduce_mean(tf.square(self.Y - self.Qpred))
self.train = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(self.loss)
# 预测动作
def predict(self, state, sess):
x = np.reshape(state, [1, self.input_size])
return sess.run(self.Qpred, feed_dict={self.X: x})
# 更新神经网络
def update(self, x_stack, y_stack, sess):
sess.run(self.train, feed_dict={self.X: x_stack, self.Y: y_stack})
# DQN算法
def DQN_algorithm():
env = gym.make('CartPole-v0')
input_size = env.observation_space.shape[0]
output_size = env.action_space.n
max_episodes = 5000
dis = 0.99
replay_buffer = []
batch_size = 10
step_history = []
step_limit = 10000
e = 1.0 / ((max_episodes / 10) + 1)
pre_states = np.zeros(input_size)
with tf.Session() as sess:
DQNetwork = DQN(env)
tf.global_variables_initializer().run()
for episode in range(max_episodes):
e = 1. / ((episode / 10) + 1)
done = False
state = env.reset()
step_count = 0
while not done:
if np.random.rand(1) < e:
action = env.action_space.sample()
else:
action = np.argmax(DQNetwork.predict(state, sess))
next_state, reward, done, _ = env.step(action)
if done:
reward = -100
replay_buffer.append([state, action, reward, next_state, done])
if len(replay_buffer) > 50000:
replay_buffer.pop(0)
state = next_state
step_count += 1
if step_count > step_limit:
break
print("Episode: {} steps: {}".format(episode, step_count))
step_history.append(step_count)
if len(replay_buffer) > batch_size:
minibatch = np.array(replay_buffer)[-batch_size:]
states = np.vstack(minibatch[:, 0])
actions = minibatch[:, 1]
rewards = minibatch[:, 2]
next_states = np.vstack(minibatch[:, 3])
done = minibatch[:, 4]
Q_targets = rewards + dis * np.max(DQNetwork.predict(next_states, sess), axis=1) * ~done
Q_targets = np.reshape(Q_targets, [batch_size, output_size])
DQNetwork.update(states, Q_targets, sess)
pre_states = state
env.close()
return step_history
```
这个程序将使用 DQN 算法来训练一个神经网络,以解决 OpenAI Gym 中的倒立摆问题。程序将输出每个 episode 的步数,并将步数存储在列表 `step_history` 中。您可以将 `step_history` 绘制成图表,以查看算法的性能如何随时间变化。
阅读全文
相关推荐















