解释: def gray2rv(self, gray_code): # Gray Code to real value: one piece of a whole chromosome # input is a 2-dimensional numpy array of 0 and 1. # output is a 1-dimensional numpy array which convert every row of input into a real number. _, len_gray_code = gray_code.shape b = gray_code.cumsum(axis=1) % 2 mask = np.logspace(start=1, stop=len_gray_code, base=0.5, num=len_gray_code) return (b * mask).sum(axis=1) / mask.sum()
时间: 2023-06-27 14:08:29 浏览: 131
这段代码实现的功能是将一个二维的格雷码数组转换成一个一维的实数数组。具体来说,输入参数gray_code是一个由0和1组成的二维numpy数组,每一行表示一个格雷码,输出是一个一维numpy数组,将每一行格雷码转换成一个实数值。具体的实现过程是,先对gray_code进行行累加,然后对2取模,得到对应的二进制数。然后使用一个掩码(mask)来将二进制数转换成实数值,掩码的生成使用了np.logspace函数,该函数生成了一个以0.5为底数的指数序列。最后将转换后的实数值存储在一维numpy数组中返回。
相关问题
class GetKmers: def __init__(self, out_dir, kmer, job_id, chr_dir, chromsize_path, idx_path): """Creates all the possible k-mers for part of the genome. Used a referece file to find the appropriate chromosome, start and end position. Passes through the fasta file of the chromosome and generates all of the possible k-mers. Args: :param out_dir: Directory for saving <chrom>.<jobid>.kmer.gz files :param str kmer: k-mer string such as 'k24' :param int job_id: Reference ID used for finding chrom, start and end :param chr_dir: Path to directory with chromosome fasta files :param chromsize_path: Path to 2 column file of chrom\tsize\n :param idx_path: Path to 4 column file of index\tchrom\tst\tend\n :returns: An object with methods such as get_step_fasta(), get_seq_ar(), write_kmers() and write_regions(). :raises ValueError: if expected chromosome path does not exist """ self.out_dir = out_dir self.kmer = kmer self.job_id = job_id self.chromsize_path = chromsize_path self.chr_dir = chr_dir self.idx_path = idx_path self.chrom, self.start, self.end = self.get_region() self.chrom_path = "{}/{}.fasta".format( self.chr_dir, self.chrom) if not os.path.exists(self.chrom_path): raise ValueError( "{} does not exist".format(self.chrom_path)) elif not os.path.exists(self.idx_path): raise ValueError( "{} does not exist".format(self.idx_path))分析这段代码的作用
这段代码定义了一个名为 GetKmers 的类,用于创建基因组局部区域的所有可能的 k-mer,通过参考文件查找适当的染色体,开始和结束位置。该类具有获取步骤 fasta 文件、获取序列数组、写入 k-mer 和写入区域等方法。其中,参数包括输出文件夹、k-mer 字符串、参考 ID、染色体 fasta 文件夹路径、染色体大小文件路径和索引文件路径等。如果预期的染色体路径或索引文件路径不存在,将引发 ValueError 异常。
我有GRCh38_latest_genomic.gtf,想要一个python脚本,输出多个exon的种类RNA的bed文件。具体步骤如下: 1.提取第三列为“transcript”的行,如果gene_id相同,transcript_id有多个,将长度最大(即第五列减去第四列最大)的一个transcript_id留下到下一步,如果只有一个transcript_id,则保留。 2.提取第三列为“exon”的行,按照上一步得到的transcript_id提取信息。 3.将exon行信息,转为bed文件。第一列转换按照 "NC_000001.11": "chr1", "NC_000002.12": "chr2", "NC_000003.12": "chr3", "NC_000004.12": "chr4", "NC_000005.10": "chr5", "NC_000006.12": "chr6", "NC_000007.14": "chr7", "NC_000008.11": "chr8", "NC_000009.12": "chr9", "NC_000010.11": "chr10", "NC_000011.10": "chr11", "NC_000012.12": "chr12", "NC_000013.11": "chr13", "NC_000014.9": "chr14", "NC_000015.10": "chr15", "NC_000016.10": "chr16", "NC_000017.11": "chr17", "NC_000018.10": "chr18", "NC_000019.10": "chr19", "NC_000020.11": "chr20", "NC_000021.9": "chr21", "NC_000022.11": "chr22", "NC_000023.11": "chrX", "NC_000024.10": "chrY" 转换为bed文件的第一列,如果gtf的第一列不为NC开头,则过滤掉。gtf文件第四列为bed文件第二列,gtf文件第五列为bed文件第三列,gtf文件第九列中“gene_id”后第一列为bed文件第四列,bed第五列赋值为1000,gtf文件第七列为bed文件第六列。
以下是根据您的要求编写的Python脚本,用于将GRCh38_latest_genomic.gtf文件转换为多个exon的种类RNA的bed文件:
```python
import re
# 定义染色体转换字典
chromosome_dict = {
"NC_000001.11": "chr1",
"NC_000002.12": "chr2",
"NC_000003.12": "chr3",
"NC_000004.12": "chr4",
"NC_000005.10": "chr5",
"NC_000006.12": "chr6",
"NC_000007.14": "chr7",
"NC_000008.11": "chr8",
"NC_000009.12": "chr9",
"NC_000010.11": "chr10",
"NC_000011.10": "chr11",
"NC_000012.12": "chr12",
"NC_000013.11": "chr13",
"NC_000014.9": "chr14",
"NC_000015.10": "chr15",
"NC_000016.10": "chr16",
"NC_000017.11": "chr17",
"NC_000018.10": "chr18",
"NC_000019.10": "chr19",
"NC_000020.11": "chr20",
"NC_000021.9": "chr21",
"NC_000022.11": "chr22",
"NC_000023.11": "chrX",
"NC_000024.10": "chrY"
}
# 读取gtf文件
with open('GRCh38_latest_genomic.gtf', 'r') as gtf_file:
lines = gtf_file.readlines()
transcripts = {} # 存储符合条件的transcript
# 提取符合条件的transcript
for line in lines:
if line.startswith('#'): # 跳过注释行
continue
columns = line.strip().split('\t')
if columns[2] == 'transcript':
attributes = re.findall(r'(\w+)\s+"([^"]+)"', columns[8])
gene_id = None
transcript_id = None
for attr in attributes:
if attr[0] == 'gene_id':
gene_id = attr[1]
elif attr[0] == 'transcript_id':
transcript_id = attr[1]
if gene_id and transcript_id:
if gene_id not in transcripts:
transcripts[gene_id] = transcript_id
else:
# 比较长度并保留最大的transcript_id
max_length = int(columns[4]) - int(columns[3])
curr_length = int(lines[transcripts[gene_id]].split('\t')[4]) - int(lines[transcripts[gene_id]].split('\t')[3])
if max_length > curr_length:
transcripts[gene_id] = transcript_id
# 提取exon行信息并转换为bed格式
bed_lines = [] # 存储bed文件的内容
for line in lines:
if line.startswith('#'): # 跳过注释行
continue
columns = line.strip().split('\t')
if columns[2] == 'exon':
attributes = re.findall(r'(\w+)\s+"([^"]+)"', columns[8])
transcript_id = None
for attr in attributes:
if attr[0] == 'transcript_id':
transcript_id = attr[1]
if transcript_id and transcript_id in transcripts.values():
chromosome = columns[0]
start = columns[3]
end = columns[4]
gene_id = re.findall(r'gene_id\s+"([^"]+)"', columns[8])[0]
strand = columns[6]
# 检查染色体是否需要转换
if chromosome in chromosome_dict:
chromosome = chromosome_dict[chromosome]
else:
continue
bed_line = f"{chromosome}\t{start}\t{end}\t{gene_id}\t1000\t{strand}"
bed_lines.append(bed_line)
# 写入bed文件
with open('output.bed', 'w') as bed_file:
bed_file.write('\n'.join(bed_lines))
print("转换完成,bed文件已生成。")
```
请将您的`GRCh38_latest_genomic.gtf`文件与上述代码放在同一目录下,并执行该脚本,即可生成名为`output.bed`的bed文件。希望这能满足您的需求!如有其他问题,请随时提问。
阅读全文
相关推荐

















