活动介绍

利用numpy模块提供的功能生成5*6的二维数组,并分别沿各个维度进行排序(包括axis=none情况),要求数组元素是在1-100之间(包括1和100)随机取值的整数。

时间: 2023-09-22 22:06:26 浏览: 249
### 回答1: 可以使用numpy模块中的random.randint函数生成1-100之间的随机整数,然后使用numpy模块中的reshape函数将一维数组转换为二维数组,最后使用numpy模块中的sort函数对二维数组进行排序。 具体代码如下: import numpy as np # 生成1-100之间的随机整数 arr = np.random.randint(1, 101, size=(5, 6)) # 沿第一维排序 arr_axis = np.sort(arr, axis=) # 沿第二维排序 arr_axis1 = np.sort(arr, axis=1) # 不指定维度排序 arr_none = np.sort(arr, axis=None) print("原始数组:") print(arr) print("沿第一维排序:") print(arr_axis) print("沿第二维排序:") print(arr_axis1) print("不指定维度排序:") print(arr_none) ### 回答2: 使用numpy模块可以方便地生成5*6的二维数组,并进行排序。在生成随机整数的过程中,需要使用random模块提供的函数。 ``` python import numpy as np # 生成5*6的二维数组,元素在1-100之间的随机整数 arr = np.random.randint(low=1, high=101, size=(5, 6)) # 沿第0维度进行排序 sorted_axis0 = np.sort(arr, axis=0) # 沿第1维度进行排序 sorted_axis1 = np.sort(arr, axis=1) # 不指定维度进行排序 sorted_none = np.sort(arr, axis=None) print("原始数组:") print(arr) print("沿第0维度排序后的数组:") print(sorted_axis0) print("沿第1维度排序后的数组:") print(sorted_axis1) print("不指定维度排序后的数组:") print(sorted_none) ``` 以上代码中,使用np.random.randint函数生成一个5行6列的二维数组,每个元素取值范围为1-100之间的随机整数。然后使用np.sort函数分别对按照第0维度、第1维度和不指定维度进行排序,将排序结果打印输出。 ### 回答3: 首先,我们需要导入numpy模块,并使用random模块生成随机整数。 ```python import numpy as np import random ``` 接下来,我们可以使用numpy提供的random模块中的randint函数来生成1-100之间的随机整数。 ```python array = np.random.randint(1, 101, size=(5, 6)) ``` 这样,我们就生成了一个大小为5*6的二维数组。 然后,我们可以使用numpy提供的sort函数来对数组进行排序。根据题目要求,我们需要分别沿着各个维度进行排序,包括axis=none情况。 ```python # 沿着第0个维度进行排序 sorted_array_0 = np.sort(array, axis=0) # 沿着第1个维度进行排序 sorted_array_1 = np.sort(array, axis=1) # 没有指定axis参数,即axis=None,将数组展平后进行排序 sorted_array_none = np.sort(array, axis=None) ``` 以上代码中,sorted_array_0和sorted_array_1分别是沿第0个维度和第1个维度进行排序后的结果,sorted_array_none是将数组展平后进行排序的结果。 最后,我们可以打印出这些排序后的结果。 ```python print("原始数组:\n", array) print("沿第0个维度排序后:\n", sorted_array_0) print("沿第1个维度排序后:\n", sorted_array_1) print("展平后排序后:\n", sorted_array_none) ``` 这样就完成了利用numpy模块生成5*6的二维数组,并分别沿各个维度进行排序的要求。
阅读全文

相关推荐

import os import numpy as np import matplotlib.pyplot as plt import librosa import librosa.display from sklearn.model_selection import StratifiedShuffleSplit from sklearn.metrics import confusion_matrix, classification_report import tensorflow as tf from tensorflow.keras import layers, models, utils, callbacks from tensorflow.keras.regularizers import l2 # 设置中文字体为宋体 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['font.family'] ='sans-serif' plt.rcParams['axes.unicode_minus'] = False # ============================================== # 配置部分(必须修改这两个路径) # ============================================== DATASET_PATH = "E:/genres" # 例如:"/home/user/GENRES" 或 "C:/Music/GENRES" TEST_AUDIO_PATH = "D:/218.wav" # 例如:"/home/user/test.mp3" 或 "C:/Music/test.wav" # ============================================== # 1. 特征提取增强版(添加数据增强) # ============================================== def extract_features(file_path, max_pad_len=174, augment=False): """提取MFCC特征并统一长度,支持数据增强""" try: # 基础加载 audio, sample_rate = librosa.load(file_path, res_type='kaiser_fast') # 数据增强(随机应用) if augment and np.random.random() > 0.5: # 随机时间拉伸 if np.random.random() > 0.5: stretch_factor = 0.8 + np.random.random() * 0.4 # 0.8-1.2 audio = librosa.effects.time_stretch(audio, rate=stretch_factor) # 随机音高变换 if np.random.random() > 0.5: n_steps = np.random.randint(-3, 4) # -3到+3个半音 audio = librosa.effects.pitch_shift(audio, sr=sample_rate, n_steps=n_steps) # 随机添加噪声 if np.random.random() > 0.5: noise = np.random.normal(0, 0.01, len(audio)) audio = audio + noise # 提取MFCC mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40) # 长度统一 pad_width = max_pad_len - mfccs.shape[1] mfccs = mfccs[:, :max_pad_len] if pad_width < 0 else np.pad( mfccs, pad_width=((0, 0), (0, pad_width)), mode='constant') # 特征归一化 mean = np.mean(mfccs, axis=1, keepdims=True) std = np.std(mfccs, axis=1, keepdims=True) mfccs = (mfccs - mean) / (std + 1e-8) except Exception as e: print(f"处理文件失败: {file_path}\n错误: {str(e)}") return None return mfccs # ============================================== # 2. 数据集加载增强版 # ============================================== def load_dataset(dataset_path, augment_train=False): """加载GENRES数据集,支持训练集数据增强""" genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] train_features, train_labels = [], [] test_features, test_labels = [], [] # 按类别加载数据 for genre_idx, genre in enumerate(genres): genre_path = os.path.join(dataset_path, genre) if not os.path.exists(genre_path): print(f"警告:类别目录不存在 - {genre_path}") continue print(f"正在处理: {genre}") audio_files = os.listdir(genre_path) # 处理训练集(支持增强) for audio_file in audio_files: file_path = os.path.join(genre_path, audio_file) # 基础特征 mfccs = extract_features(file_path, augment=False) if mfccs is not None: train_features.append(mfccs) train_labels.append(genre_idx) # 增强特征(仅对训练集) if augment_train: mfccs_aug = extract_features(file_path, augment=True) if mfccs_aug is not None: train_features.append(mfccs_aug) train_labels.append(genre_idx) all_features = np.array(train_features) all_labels = np.array(train_labels) # 使用StratifiedShuffleSplit进行分层抽样 sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in sss.split(all_features, all_labels): X_train, X_test = all_features[train_index], all_features[test_index] y_train, y_test = all_labels[train_index], all_labels[test_index] return X_train, y_train, X_test, y_test # ============================================== # 3. 数据预处理 # ============================================== def prepare_datasets(train_features, train_labels, test_features, test_labels): """添加通道维度和One-hot编码""" # 添加通道维度 (CNN需要) X_train = train_features[..., np.newaxis] X_test = test_features[..., np.newaxis] # One-hot编码 y_train = utils.to_categorical(train_labels, 10) y_test = utils.to_categorical(test_labels, 10) return X_train, X_test, y_train, y_test # ============================================== # 4. 改进的CNN模型构建与编译 # ============================================== def build_and_compile_model(input_shape): """构建更适合音乐分类的CNN模型""" model = models.Sequential([ # 第一个卷积块 layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape, padding='same', kernel_regularizer=l2(0.001)), layers.BatchNormalization(), layers.MaxPooling2D((2, 2)), layers.Dropout(0.3), # 第二个卷积块 layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(0.001)), layers.BatchNormalization(), layers.MaxPooling2D((2, 2)), layers.Dropout(0.3), # 第三个卷积块 layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(0.001)), layers.BatchNormalization(), layers.MaxPooling2D((2, 2)), layers.Dropout(0.3), # 第四个卷积块 layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_regularizer=l2(0.001)), layers.BatchNormalization(), layers.MaxPooling2D((2, 2)), layers.Dropout(0.3), # 全局平均池化替代全连接层 layers.GlobalAveragePooling2D(), # 输出层 layers.Dense(10, activation='softmax') ]) # 使用Adam优化器,学习率稍微降低 model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=0.0003), loss='categorical_crossentropy', metrics=['accuracy'] ) return model # ============================================== # 5. 训练与评估 # ============================================== def train_and_evaluate(model, X_train, y_train, X_test, y_test): """训练模型并评估""" print("\n开始训练...") # 定义回调函数 callbacks_list = [ callbacks.EarlyStopping(patience=15, restore_best_weights=True), callbacks.ReduceLROnPlateau(factor=0.5, patience=5, min_lr=0.00001), callbacks.ModelCheckpoint( 'best_model.keras', monitor='val_accuracy', save_best_only=True, mode='max', verbose=1 ) ] # 训练模型 history = model.fit( X_train, y_train, validation_data=(X_test, y_test), epochs=150, batch_size=32, callbacks=callbacks_list, verbose=1 ) # 加载最佳模型 model = tf.keras.models.load_model('best_model.keras') # 评估训练集 train_loss, train_acc = model.evaluate(X_train, y_train, verbose=0) print(f"训练集准确率: {train_acc:.4f}, 训练集损失: {train_loss:.4f}") # 评估测试集 test_loss, test_acc = model.evaluate(X_test, y_test, verbose=0) print(f"测试集准确率: {test_acc:.4f}, 测试集损失: {test_loss:.4f}") # 混淆矩阵 y_pred = np.argmax(model.predict(X_test), axis=1) y_true = np.argmax(y_test, axis=1) cm = confusion_matrix(y_true, y_pred) # 绘制结果 plot_results(history, cm) # 打印classification_report genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] print("\n分类报告:") print(classification_report(y_true, y_pred, target_names=genres)) return model, history # ============================================== # 6. 可视化工具 # ============================================== def plot_results(history, cm): """绘制训练曲线和混淆矩阵""" # 创建两个图像,分别显示准确率和loss plt.figure(figsize=(15, 10)) # 准确率曲线 plt.subplot(2, 1, 1) plt.plot(history.history['accuracy'], label='训练准确率') plt.plot(history.history['val_accuracy'], label='验证准确率') plt.title('模型准确率') plt.ylabel('准确率') plt.xlabel('训练轮次') plt.legend() # 损失曲线 plt.subplot(2, 1, 2) plt.plot(history.history['loss'], label='训练损失') plt.plot(history.history['val_loss'], label='验证损失') plt.title('模型损失') plt.ylabel('损失') plt.xlabel('训练轮次') plt.legend() plt.tight_layout() plt.show() # 混淆矩阵图像 plt.figure(figsize=(10, 8)) plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.title('混淆矩阵') plt.colorbar() genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] plt.xticks(np.arange(10), genres, rotation=45) plt.yticks(np.arange(10), genres) thresh = cm.max() / 2. for i in range(10): for j in range(10): plt.text(j, i, format(cm[i, j], 'd'), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.show() # ============================================== # 7. 预测函数 # ============================================== def predict_audio(model, audio_path): """预测单个音频""" genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] print(f"\n正在分析: {audio_path}") mfccs = extract_features(audio_path, augment=False) if mfccs is None: return mfccs = mfccs[np.newaxis, ..., np.newaxis] predictions = model.predict(mfccs) predicted_index = np.argmax(predictions) print("\n各类别概率:") for i, prob in enumerate(predictions[0]): print(f"{genres[i]:<10}: {prob*100:.2f}%") print(f"\n最终预测: {genres[predicted_index]}") # ============================================== # 主函数 # ============================================== def main(): # 检查路径 if not os.path.exists(DATASET_PATH): print(f"错误:数据集路径不存在!\n当前路径: {os.path.abspath(DATASET_PATH)}") return # 1. 加载数据(启用训练集增强) print("\n=== 步骤1/5: 加载数据集 ===") X_train, y_train, X_test, y_test = load_dataset(DATASET_PATH, augment_train=True) print(f"训练集样本数: {len(X_train)}, 测试集样本数: {len(X_test)}") # 2. 数据划分 print("\n=== 步骤2/5: 划分数据集 ===") X_train, X_test, y_train, y_test = prepare_datasets(X_train, y_train, X_test, y_test) print(f"训练集: {X_train.shape}, 测试集: {X_test.shape}") # 3. 构建模型 print("\n=== 步骤3/5: 构建模型 ===") model = build_and_compile_model(X_train.shape[1:]) model.summary() # 4. 训练与评估 print("\n=== 步骤4/5: 训练模型 ===") model, history = train_and_evaluate(model, X_train, y_train, X_test, y_test) # 5. 预测示例 print("\n=== 步骤5/5: 预测示例 ===") if os.path.exists(TEST_AUDIO_PATH): predict_audio(model, TEST_AUDIO_PATH) else: print(f"测试音频不存在!\n当前路径: {os.path.abspath(TEST_AUDIO_PATH)}") if __name__ == "__main__": print("=== 音频分类系统 ===") print(f"TensorFlow版本: {tf.__version__}") print(f"Librosa版本: {librosa.__version__}") print("\n注意:请确保已修改以下路径:") print(f"1. DATASET_PATH = '{DATASET_PATH}'") print(f"2. TEST_AUDIO_PATH = '{TEST_AUDIO_PATH}'") print("\n开始运行...\n") main()训练集 - 准确率: 0.7218, 损失: 1.3039 测试集 - 准确率: 0.6258, 损失: 1.4914 这个现象该如何解决呢,如何才能提高其准确率,而且防止出现过拟合或欠拟合的现象

5.用sklearn包进行聚类分析——图片数据 1.导入所需的包 from PIL import Image import numpy as np from sklearn.cluster import KMeans import matplotlib.pyplot as plt 2.读取图像并转换为NumPy数组 image = Image.open("XXXXX.png") image_np = np.array(image) height, width, channels = image_np.shape 3.将像素转换为二维数组(每个像素为一个样本) pixels = image_np.reshape(-1, channels) 4.设置k-means算法中K值 k = 2 kmeans = KMeans(n_clusters=k, random_state=0) kmeans.fit(pixels) 5.获取聚类中心和标签 labels = kmeans.labels_ centers = kmeans.cluster_centers_.astype('uint8') 6.用簇中心重构图像 segmented_image = centers[labels].reshape(height, width, channels) 7.显示并保存结果 plt.imshow(segmented_image) plt.axis('off') plt.show() 8.尝试不同K值下图片分割的结果 9.对比不同聚类算法 from PIL import Image import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans, MeanShift, DBSCAN, estimate_bandwidth from sklearn.mixture import GaussianMixture from time import time import matplotlib.colors as mcolors # 读取图像并预处理 image = Image.open("XXXX.png") image_np = np.array(image) height, width, channels = image_np.shape pixels = image_np.reshape(-1, channels) # 定义算法列表和参数 algorithms = { "K-means (K=5)": { "model": KMeans(n_clusters=5, n_init='auto', random_state=0), "time": None, "result": None }, "Mean Shift": { "model": MeanShift(bandwidth=20, bin_seeding=True), "time": None, "result": None }, "DBSCAN": { "model": DBSCAN(eps=20, min_samples=4), "time": None, "result": None }, "GMM (K=5)": { "model": GaussianMixture(n_components=5, random_state=0), "time": None, "result": None } } # 运行所有算法并记录时间 for name, algo in algorithms.items(): print(f"正在运行算法: {name}") start_time = time() model = algo["model"] if name == "GMM (K=5)": labels = model.fit_predict(pixels) # GMM使用fit_predict else: model.fit(pixels) labels = model.labels_ algo["time"] = time() - start_time algo["result"] = labels # 重构图像并可视化 plt.figure(figsize=(15, 10)) for i, (name, algo) in enumerate(algorithms.items()): # 处理噪声标签(如DBSCAN的-1标签) if name == "DBSCAN": unique_labels = np unique(algo["result"]) # 获取颜色映射(修复弃用警告) cmap = plt.colormaps.get_cmap('tab20') colors = cmap(np.linspace(0, 1, len(unique_labels))) # 创建噪声颜色(根据图像通道数) noise_color = np.zeros(channels) # 自动匹配RGB/RGBA if channels == 4: noise_color[-1] = 1 # Alpha通道设为不透明 # 合并颜色数组 colors = np.vstack([colors, noise_color]) centers = np.array([pixels[algo["result"] == label].mean(axis=0) for label in unique_labels if label != -1]) centers = np.vstack([centers, noise_color]) # 维度匹配 # 重构像素 label_mapping = {label: idx for idx, label in enumerate(unique_labels)} label_mapping[-1] = len(centers) - 1 # 噪声映射到最后一个颜色 segmented = np.array([centers[label_mapping[label]] for label in algo["result"]]) else: if hasattr(algo["model"], 'cluster_centers_'): centers = algo["model"].cluster_centers_ else: unique_labels = np.unique(algo["result"]) centers = np.array([pixels[algo["result"] == label].mean(axis=0) for label in unique_labels]) segmented = centers[algo["result"]] # 转换为图像格式 segmented_image = segmented.reshape(height, width, channels).astype('uint8') # 绘制子图 plt.subplot(2, 2, i+1) plt.imshow(segmented_image) plt.title(f"{name}\n时间: {algo['time']:.2f}s", fontsize=10) plt.axis('off') plt.tight_layout() plt.savefig("算法对比结果.png", dpi=300, bbox_inches='tight') plt.show() 10.对比不同算法对证件照、医学图片图像(如核磁共振影像)、风景照、街景等图片的分割效果,并分析结果 写出第8步代码

import numpy as np import pandas as pd import matplotlib.pyplot as plt import platform def entropy_weight(data, index_type=None, epsilon=1e-6): """ 熵权法计算指标权重 参数: data : 二维数组或DataFrame 原始数据矩阵,行为样本(建筑企业/供应商),列为指标 index_type : list, optional 指标类型列表 (1=正向指标, -1=负向指标) epsilon : float, optional 防止log(0)的极小值 返回: weights : 一维数组 各指标的熵权权重 entropy_values : 一维数组 各指标的信息熵值 """ # 转换为numpy数组 X = np.array(data) m, n = X.shape # m个样本,n个指标 # 默认全为正向指标 if index_type is None: index_type = np.ones(n) else: index_type = np.array(index_type) # 1. 数据标准化 X_normalized = np.zeros_like(X, dtype=float) for j in range(n): col = X[:, j] min_val = np.min(col) max_val = np.max(col) # 正向指标处理 if index_type[j] == 1: if max_val - min_val < epsilon: X_normalized[:, j] = 1.0 else: X_normalized[:, j] = (col - min_val) / (max_val - min_val) # 负向指标处理 elif index_type[j] == -1: if max_val - min_val < epsilon: X_normalized[:, j] = 1.0 else: X_normalized[:, j] = (max_val - col) / (max_val - min_val) # 2. 计算比重 p_ij p_matrix = X_normalized / np.sum(X_normalized, axis=0, keepdims=True) # 3. 计算信息熵 e_j entropy_values = np.zeros(n) for j in range(n): p_col = p_matrix[:, j] p_col[p_col < epsilon] = epsilon # 避免log(0) entropy_values[j] = -1 / np.log(m) * np.sum(p_col * np.log(p_col)) # 4. 计算权重 w_j d_values = 1 - entropy_values # 信息效用值 weights = d_values / np.sum(d_values) return weights, entropy_values def main(): print("="*60) print("建筑行业熵权法综合评价系统 - 麒麟系统专用版") print(f"系统信息: {platform.platform()}") print(f"Python版本: {platform.python_version()}") print("="*60) # ================= 建筑企业评价数据 ================= # 指标: 利润率(%,正向), 安全事故率(%,负向), BIM应用等级(1-5,正向), 碳排放强度(kg/m²,负向) data = np.array([ [11, 65, 4, 32], # 企业A [22, 17.2, 2, 45], # 企业B [33, 12, 3, 38], # 企业C [44, 22, 5, 28], # 企业D [55, 34, 4, 42] # 企业E ]) # 指标类型: 1=正向, -1=负向 index_types = [1, -1, 1, 1] # 指标名称 index_names = ["利润率(%)", "安全事故率(%)", "质量安全(1-5)", "施工人数(个)"] # 企业名称 company_names = ["企业A", "企业B", "企业C", "企业D", "企业E"] # 创建DataFrame df = pd.DataFrame(data, index=company_names, columns=index_names) print("\n建筑企业原始数据:") print(df) # 计算熵权 print("\n正在计算熵权...") weights, entropies = entropy_weight(data, index_types) # 输出结果 result_df = pd.DataFrame({ "指标": index_names, "指标类型": ["正向" if t == 1 else "负向" for t in index_types], "信息熵": np.round(entropies, 4), "权重": np.round(weights, 4), "权重百分比": [f"{w*100:.2f}%" for w in weights] }) print("\n===== 熵权法计算结果 =====") print(result_df) # 应用权重计算企业综合得分 print("\n正在计算企业综合得分...") normalized_data = np.zeros_like(data, dtype=float) for j in range(data.shape[1]): col = data[:, j] min_val = np.min(col) max_val = np.max(col) if index_types[j] == 1: # 正向指标 normalized_data[:, j] = (col - min_val) / (max_val - min_val) else: # 负向指标 normalized_data[:, j] = (max_val - col) / (max_val - min_val) # 计算综合得分 scores = np.dot(normalized_data, weights) # 创建结果DataFrame score_df = pd.DataFrame({ "企业": company_names, "综合得分": np.round(scores, 4), }).sort_values("综合得分", ascending=False) score_df["排名"] = range(1, len(score_df)+1) print("\n企业综合评价结果:") print(score_df) # ================= 可视化结果 ================= print("\n正在生成可视化图表...") plt.rcParams['font.sans-serif'] = ['SimHei', 'DejaVu Sans'] # 解决中文显示问题 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 plt.figure(figsize=(12, 10)) # 1. 权重分布图 plt.subplot(2, 1, 1) bars = plt.bar(result_df["指标"], result_df["权重"], color=['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728']) plt.title('建筑企业评价指标权重分布', fontsize=14) plt.ylabel('权重', fontsize=12) plt.xticks(fontsize=10) plt.grid(axis='y', linestyle='--', alpha=0.7) # 添加权重值标签 for bar in bars: height = bar.get_height() plt.text(bar.get_x() + bar.get_width()/2., height, f'{height:.3f}', ha='center', va='bottom', fontsize=10) # 2. 企业排名图 plt.subplot(2, 1, 2) sorted_df = score_df.sort_values("综合得分") # 从低到高排序 plt.barh(sorted_df["企业"], sorted_df["综合得分"], color='#2ca02c') plt.title('建筑企业综合得分排名', fontsize=14) plt.xlabel('综合得分', fontsize=12) plt.xlim(0, 1) # 添加得分标签 for i, (name, score) in enumerate(zip(sorted_df["企业"], sorted_df["综合得分"])): plt.text(score + 0.02, i, f'{score:.3f}', va='center', fontsize=10) plt.tight_layout() # 保存结果 output_file = '建筑企业评价结果.png' plt.savefig(output_file, dpi=300) print(f"\n已保存可视化结果到: {output_file}") # 显示图表 plt.show() print("\n===== 分析完成 =====") print("结果说明:") print("1. 权重分布图展示了各评价指标的重要性") print("2. 企业排名图显示了各建筑企业的综合得分排名") print("3. 权重最高的指标对评价结果影响最大") if __name__ == "__main__": main()该代码有多少目标项和指标项 若想增加指标项怎么改

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.optimizers import Adam from sklearn.model_selection import TimeSeriesSplit import joblib import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer from tensorflow.keras.optimizers import Adam import warnings import tensorflow as tf warnings.filterwarnings('ignore') # ===== 自定义注意力层 ===== class AttentionLayer(Layer): def __init__(self, **kwargs): super(AttentionLayer, self).__init__(**kwargs) def build(self, input_shape): self.time_steps = input_shape[1] self.feature_dim = input_shape[2] # 创建可训练权重 self.W = self.add_weight( name='att_weight', shape=(self.feature_dim, self.feature_dim), initializer='glorot_uniform', trainable=True ) self.b = self.add_weight( name='att_bias', shape=(self.feature_dim,), initializer='zeros', trainable=True ) self.V = self.add_weight( name='att_v', shape=(self.feature_dim, 1), initializer='glorot_uniform', trainable=True ) super(AttentionLayer, self).build(input_shape) def call(self, inputs): # 计算注意力分数 score = tf.tanh(tf.matmul(inputs, self.W) + self.b) # (batch, time_steps, feature_dim) score = tf.matmul(score, self.V) # (batch, time_steps, 1) score = tf.squeeze(score, axis=-1) # (batch, time_steps) # 应用softmax获取注意力权重 alpha = tf.nn.softmax(score, axis=-1) # (batch, time_steps) alpha = tf.expand_dims(alpha, axis=-1) # (batch, time_steps, 1) # 加权求和 context = tf.reduce_sum(alpha * inputs, axis=1) # (batch, feature_dim) return context def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[2]) # (batch_size, feature_dim) # ===== 模型构建函数 ===== def build_attention_lstm_model(input_shape): time_steps, num_features = input_shape inputs = Input(shape=input_shape) # LSTM层 lstm_out = LSTM(128, return_sequences=True)(inputs) lstm_out = Dropout(0.3)(lstm_out) # 使用自定义注意力层 attention_out = AttentionLayer()(lstm_out) # 红球分支 red_branch = Dense(64, activation='relu')(attention_out) red_branch = Dropout(0.2)(red_branch) red_output = Dense(33, activation='sigmoid', name='red_output')(red_branch) # 蓝球分支 blue_branch = Dense(32, activation='relu')(attention_out) blue_branch = Dropout(0.2)(blue_branch) blue_output = Dense(16, activation='sigmoid', name='blue_output')(blue_branch) model = Model(inputs=inputs, outputs=[red_output, blue_output]) optimizer = Adam(learning_rate=0.001) model.compile( optimizer=optimizer, loss={'red_output': 'binary_crossentropy', 'blue_output': 'binary_crossentropy'}, metrics={'red_output': 'binary_accuracy', 'blue_output': 'binary_accuracy'}, # 关键修改:使用字典形式指定损失权重 loss_weights={'red_output': 0.7, 'blue_output': 0.3} ) model.summary() return model # ===== 数据预处理函数 ===== def step1_format_data(): """格式化原始数据""" print("===== 步骤1: 格式化原始数据 =====") df = pd.read_excel('01hand.xlsx', sheet_name='Sheet1', header=None) # 提取A列和C列数据 new_df = pd.DataFrame({ 'A': pd.to_numeric(df.iloc[:, 0], errors='coerce'), 'B': pd.to_numeric(df.iloc[:, 2], errors='coerce') }).dropna() # 保存新文件 new_df.to_excel('01hand2.xlsx', index=False, header=False) print(f"新表格 '01hand2.xlsx' 创建成功! 包含 {len(new_df)} 行数据") def step2_process_data(): """数据去重和排序""" print("\n===== 步骤2: 数据去重和排序 =====") input_file = "01hand2.xlsx" output_file1 = "02resultA.xlsx" # 降序输出 output_file2 = "02resultB.xlsx" # 升序输出 # 读取数据并转换为长格式 df = pd.read_excel(input_file, header=None) all_values = df.stack().dropna().astype(str).tolist() # 确保数据长度是8的倍数 valid_length = len(all_values) - (len(all_values) % 8) if len(all_values) != valid_length: print(f"警告: 数据总量 {len(all_values)} 不符合8的倍数, 截断至 {valid_length} 个元素") all_values = all_values[:valid_length] # 转换数据格式 new_data = [] for i in range(0, len(all_values), 8): group = all_values[i:i+8] try: # 转换日期和数字 date = int(group[0]) numbers = [int(float(num)) if '.' in num else int(num) for num in group[1:]] new_data.append([date] + numbers) except: continue # 创建DataFrame并去重 columns = ['日期', '数字1', '数字2', '数字3', '数字4', '数字5', '数字6', '数字7'] df = pd.DataFrame(new_data, columns=columns) df = df.drop_duplicates(subset='日期').dropna() # 保存降序文件 df.sort_values('日期', ascending=False).to_excel(output_file1, index=False) print(f"降序文件保存至: {output_file1}") # 保存升序文件 df.sort_values('日期', ascending=True).to_excel(output_file2, index=False) print(f"升序文件保存至: {output_file2}") print(f"最终数据维度: {df.shape}") return df # ===== 特征工程函数 ===== def create_features(df, save_features=True): """创建模型特征并保存特征处理器""" print("\n===== 步骤3: 特征工程 =====") features = df[['日期']].copy() red_cols = ['数字1', '数字2', '数字3', '数字4', '数字5', '数字6'] # 基础特征 features['红球和值'] = df[red_cols].sum(axis=1) features['蓝球值'] = df['数字7'] features['奇偶比'] = df[red_cols].applymap(lambda x: x % 2).sum(axis=1) features['大小比'] = df[red_cols].applymap(lambda x: 1 if x > 16 else 0).sum(axis=1) # 窗口特征 (窗口大小10) window_size = 10 for col in ['红球和值', '奇偶比', '大小比']: features[f'{col}_MA{window_size}'] = features[col].rolling(window=window_size).mean() features[f'{col}_STD{window_size}'] = features[col].rolling(window=window_size).std() # 滞后特征 (滞后1-9期) for lag in range(1, 10): for col in red_cols + ['数字7']: features[f'{col}_lag{lag}'] = df[col].shift(lag) # 目标变量 (下一期开奖结果) red_targets = [] blue_targets = [] for i in range(len(df) - 1): next_row = df.iloc[i + 1] # 红球目标 (33选6) red_target = [1 if num in next_row[red_cols].values else 0 for num in range(1, 34)] # 蓝球目标 (16选1) blue_target = [1 if i == next_row['数字7'] else 0 for i in range(1, 17)] red_targets.append(red_target) blue_targets.append(blue_target) # 转换为numpy数组 red_targets = np.array(red_targets) blue_targets = np.array(blue_targets) # 移除无效数据 (前window_size行和最后一行) features = features.iloc[window_size:-1].reset_index(drop=True) red_targets = red_targets[window_size-1:-1] # 对齐索引 blue_targets = blue_targets[window_size-1:-1] # 保存特征处理器 feature_columns = features.drop(columns=['日期']).columns.tolist() joblib.dump(feature_columns, 'feature_columns.pkl') print(f"特征列名已保存: {len(feature_columns)}个特征") if save_features: features.to_excel('04_features.xlsx', index=False) print(f"特征工程完成, 维度: {features.shape}") return features, red_targets, blue_targets # ===== 模型构建函数 ===== def prepare_data(features, red_targets, blue_targets): """准备训练数据并保存数据处理器""" print("\n===== 步骤4: 数据准备 =====") scaler_X = MinMaxScaler() X_scaled = scaler_X.fit_transform(features.drop(columns=['日期'])) # 保存特征处理器 joblib.dump(scaler_X, 'scaler_X.save') print("特征缩放器已保存") # 创建时间序列数据 time_steps = 10 X_seq, y_red_seq, y_blue_seq = [], [], [] for i in range(time_steps, len(X_scaled)): X_seq.append(X_scaled[i-time_steps:i, :]) y_red_seq.append(red_targets[i-1]) # 使用当前时间步的目标 y_blue_seq.append(blue_targets[i-1]) X_seq = np.array(X_seq) y_red_seq = np.array(y_red_seq) y_blue_seq = np.array(y_blue_seq) print(f"时间序列数据形状: X={X_seq.shape}, y_red={y_red_seq.shape}, y_blue={y_blue_seq.shape}") # 保存历史数据用于预测 joblib.dump(X_scaled[-10:], 'historical_data.pkl') print("历史数据已保存用于预测") return X_seq, y_red_seq, y_blue_seq, scaler_X # ===== 模型训练函数 ===== def train_model(X, y_red, y_blue): """训练模型""" print("\n===== 步骤5: 模型训练 =====") best_models = [] tscv = TimeSeriesSplit(n_splits=3) for fold, (train_index, val_index) in enumerate(tscv.split(X)): print(f"\n===== 训练 Fold {fold+1}/3 =====") X_train, X_val = X[train_index], X[val_index] y_red_train, y_red_val = y_red[train_index], y_red[val_index] y_blue_train, y_blue_val = y_blue[train_index], y_blue[val_index] model = build_attention_lstm_model((X_train.shape[1], X_train.shape[2])) callbacks = [ EarlyStopping(monitor='val_loss', patience=15, restore_best_weights=True, verbose=1), ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=7, min_lr=1e-6, verbose=1) ] history = model.fit( X_train, {'red_output': y_red_train, 'blue_output': y_blue_train}, epochs=100, batch_size=32, validation_data=(X_val, {'red_output': y_red_val, 'blue_output': y_blue_val}), callbacks=callbacks, verbose=1 ) model.save(f'best_model_fold{fold+1}.h5') best_models.append(model) # 保存训练历史图 plot_training_history(history, fold+1) return best_models def plot_training_history(history, fold): """绘制训练历史图表""" plt.figure(figsize=(15, 10)) # 损失曲线 plt.subplot(2, 2, 1) plt.plot(history.history['loss'], label='训练损失') plt.plot(history.history['val_loss'], label='验证损失') plt.title(f'Fold {fold} - 总损失曲线') plt.ylabel('损失') plt.xlabel('Epoch') plt.legend() # 红球准确率 plt.subplot(2, 2, 2) plt.plot(history.history['red_output_binary_accuracy'], label='红球训练准确率') plt.plot(history.history['val_red_output_binary_accuracy'], label='红球验证准确率') plt.title(f'Fold {fold} - 红球准确率') plt.ylabel('准确率') plt.xlabel('Epoch') plt.legend() # 蓝球准确率 plt.subplot(2, 2, 3) plt.plot(history.history['blue_output_binary_accuracy'], label='蓝球训练准确率') plt.plot(history.history['val_blue_output_binary_accuracy'], label='蓝球验证准确率') plt.title(f'Fold {fold} - 蓝球准确率') plt.ylabel('准确率') plt.xlabel('Epoch') plt.legend() # 学习率 plt.subplot(2, 2, 4) if 'lr' in history.history: plt.plot(history.history['lr'], label='学习率') plt.title(f'Fold {fold} - 学习率变化') plt.ylabel('学习率') plt.xlabel('Epoch') plt.legend() plt.tight_layout() plt.savefig(f'training_history_fold{fold}.png') plt.close() # ===== 预测准备函数 ===== def prepare_prediction_input(df, features, scaler_X): """准备预测输入,确保特征一致性""" print("\n===== 准备预测输入 =====") # 加载特征列名 feature_columns = joblib.load('feature_columns.pkl') print(f"预期特征数量: {len(feature_columns)}") # 创建空DataFrame prediction_features = pd.DataFrame(columns=feature_columns) # 获取最后10行有效数据 last_10 = features.iloc[-10:] # 填充基础特征 red_cols = ['数字1', '数字2', '数字3', '数字4', '数字5', '数字6'] current_row = df.iloc[-1] prediction_features.loc[0, '红球和值'] = current_row[red_cols].sum() prediction_features.loc[0, '蓝球值'] = current_row['数字7'] prediction_features.loc[0, '奇偶比'] = current_row[red_cols].apply(lambda x: x % 2).sum() prediction_features.loc[0, '大小比'] = current_row[red_cols].apply(lambda x: 1 if x > 16 else 0).sum() # 填充窗口特征 window_size = 10 for col in ['红球和值', '奇偶比', '大小比']: col_values = features[col].iloc[-window_size:] prediction_features.loc[0, f'{col}_MA{window_size}'] = col_values.mean() prediction_features.loc[0, f'{col}_STD{window_size}'] = col_values.std() # 填充滞后特征 - 修正逻辑 for lag in range(1, 10): # 确保滞后索引有效 lag_index = -lag - 1 # 从当前行向前追溯 for col in red_cols + ['数字7']: feature_name = f'{col}_lag{lag}' if feature_name in feature_columns: if len(df) > lag: prediction_features.loc[0, feature_name] = df[col].iloc[lag_index] else: # 数据不足时使用平均值 prediction_features.loc[0, feature_name] = df[col].mean() # 处理缺失特征 missing_cols = set(feature_columns) - set(prediction_features.columns) for col in missing_cols: prediction_features[col] = 0 # 默认填充0 # 确保顺序一致 prediction_features = prediction_features[feature_columns] # 标准化 X_pred = scaler_X.transform(prediction_features) print(f"预测输入形状: {X_pred.shape}") return X_pred # ===== 预测函数 ===== def predict_next_period(models): """预测下一期开奖结果""" print("\n===== 步骤6: 预测 =====") # 加载历史数据和缩放器 scaler_X = joblib.load('scaler_X.save') historical_data = joblib.load('historical_data.pkl') # 获取特征列名 feature_columns = joblib.load('feature_columns.pkl') n_features = len(feature_columns) # 构建时间序列输入 time_steps = 10 if len(historical_data) >= time_steps: # 使用完整的历史数据 X_seq = historical_data[-time_steps:].reshape(1, time_steps, n_features) else: # 数据不足时复制最后一个时间点 X_seq = np.repeat(historical_data[-1:], time_steps, axis=0).reshape(1, time_steps, n_features) print(f"模型输入序列形状: {X_seq.shape}") # 集成模型预测 red_probs = np.zeros((1, 33)) blue_probs = np.zeros((1, 16)) total_weight = 0 for i, model in enumerate(models): r_prob, b_prob = model.predict(X_seq, verbose=0) weight = 0.3 + i * 0.2 # 加权集成 red_probs += r_prob * weight blue_probs += b_prob * weight total_weight += weight # 归一化概率 red_probs /= total_weight blue_probs /= total_weight # 获取预测结果 red_indices = np.argsort(red_probs[0])[::-1][:6] blue_indices = np.argsort(blue_probs[0])[::-1][:3] return ( [i+1 for i in red_indices], [red_probs[0][i] for i in red_indices], [i+1 for i in blue_indices], [blue_probs[0][i] for i in blue_indices] ) # ===== 主函数 ===== def main(): # 执行数据处理步骤 step1_format_data() df = step2_process_data() # 特征工程 features, red_targets, blue_targets = create_features(df) # 准备训练数据 X, y_red, y_blue, scaler_X = prepare_data(features, red_targets, blue_targets) # 训练模型 models = train_model(X, y_red, y_blue) # 预测 red_nums, red_probs, blue_nums, blue_probs = predict_next_period(models) # 打印结果 print("\n" + "="*50) print("双色球下一期预测结果") print("="*50) print("\n红球预测 (前6个):") for num, prob in zip(red_nums, red_probs): print(f"号码 {num:2d} : 概率 {prob:.4f}") print("\n蓝球预测 (前3个):") for num, prob in zip(blue_nums, blue_probs): print(f"号码 {num:2d} : 概率 {prob:.4f}") # 保存结果 result_df = pd.DataFrame({ '红球预测': red_nums, '红球概率': red_probs, '蓝球预测': blue_nums, '蓝球概率': blue_probs }) result_df.to_excel('prediction_results.xlsx', index=False) print("\n预测结果已保存至: prediction_results.xlsx") if __name__ == "__main__": main() # main.py import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense, Dropout, Layer from tensorflow.keras.optimizers import Adam # 内联定义自定义层(避免导入问题) class AttentionLayer(Layer): """自定义注意力层""" def __init__(self, **kwargs): super(AttentionLayer, self).__init__(**kwargs) def build(self, input_shape): self.time_steps = input_shape[1] self.feature_dim = input_shape[2] self.W = self.add_weight( name='att_weight', shape=(self.feature_dim, self.feature_dim), initializer='glorot_uniform', trainable=True ) self.b = self.add_weight( name='att_bias', shape=(self.feature_dim,), initializer='zeros', trainable=True ) self.V = self.add_weight( name='att_v', shape=(self.feature_dim, 1), initializer='glorot_uniform', trainable=True ) super(AttentionLayer, self).build(input_shape) def call(self, inputs): score = tf.tanh(tf.matmul(inputs, self.W) + self.b) score = tf.matmul(score, self.V) score = tf.squeeze(score, axis=-1) alpha = tf.nn.softmax(score, axis=-1) alpha = tf.expand_dims(alpha, axis=-1) context = tf.reduce_sum(alpha * inputs, axis=1) return context def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[2]) # 模型构建函数 def build_attention_lstm_model(input_shape): inputs = Input(shape=input_shape) # LSTM层 lstm_out = LSTM(128, return_sequences=True)(inputs) lstm_out = Dropout(0.3)(lstm_out) # 使用自定义层 attention_out = AttentionLayer()(lstm_out) # 输出分支 red_branch = Dense(64, activation='relu')(attention_out) red_output = Dense(33, activation='sigmoid', name='red_output')(red_branch) blue_branch = Dense(32, activation='relu')(attention_out) blue_output = Dense(16, activation='sigmoid', name='blue_output')(blue_branch) model = Model(inputs=inputs, outputs=[red_output, blue_output]) model.compile( optimizer=Adam(0.001), loss={'red_output': 'binary_crossentropy', 'blue_output': 'binary_crossentropy'}, # 这里也需要修改为字典形式 loss_weights={'red_output': 0.7, 'blue_output': 0.3} ) return model # 测试模型构建 if __name__ == "__main__": model = build_attention_lstm_model(input_shape=(10, 20)) model.summary() print("模型构建成功!") #请优化代码,当前报错:All arrays must be of the same length

图中代码运行报错, TypeError: cannot unpack non - iterable NoneType object ,意思是尝试对一个 NoneType (即值为 None )的对象进行解包操作。在代码 reconstructed, binary_mask = wavelet_segmentation(ct_slice)  中, wavelet_segmentation 函数返回的是 None ,而代码却试图将其解包成两个变量 reconstructed 和 binary_mask ,所以报错。 解决方法: 检查 wavelet_segmentation 函数,确认其内部逻辑,确保该函数在执行完成后返回正确的值,而不是 None 。比如查看函数中是否有正确的 return 语句,以及在各种条件分支下都能返回合适的数据。 可以在调用 wavelet_segmentation 函数的地方,先打印输出该函数的返回值,看看是否是预期的结果,方便定位问题。根据以上代码报错修改以下代码def wavelet_segmentation(image, wavelet='db4', level=3, keep_percent=90): """执行小波变换分割(修正版)""" # 小波分解 coeffs = pywt.wavedec2(image, wavelet, level=level) # 系数阈值处理(保持结构) threshold = np.percentile(np.abs(coeffs[0]), 100 - keep_percent) # 正确处理近似系数和细节系数 coeffs_filtered = [pywt.threshold(coeffs[0], threshold, mode='soft')] # 处理近似系数 # 逐层处理细节系数(保持元组结构) for detail_level in coeffs[1:]: filtered_detail = tuple( pywt.threshold(d, threshold, mode='soft') for d in detail_level ) coeffs_filtered.append(filtered_detail) # 图像重建与分割 reconstructed = pywt.waverec2(coeffs_filtered, wavelet) thresh = threshold_otsu(reconstructed) return reconstructed, (reconstructed > thresh).astype(np.uint8) # -*- coding: utf-8 -*- """ 腹腔CT合成与小波分割实验完整代码 环境要求:Python 3.8+,需提前执行 pip install numpy scipy matplotlib pywavelets scikit-image """ import numpy as np from scipy.ndimage import zoom import pywt from skimage.filters import threshold_otsu import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix # ====================== # 第一部分:CT数据合成 # ====================== def generate_synthetic_ct(size=256): """生成模拟腹部CT冠状面切片 参数说明: size - 三维体积的边长尺寸(默认256) 返回: 512x512的二维冠状面切片(已降采样) """ np.random.seed(42) # 固定随机种子保证可重复性 volume = np.zeros((size, size, size)) x, y, z = np.mgrid[:size, :size, :size] # 模拟脊柱(圆柱结构) spine_radius = size // 8 spine_mask = (x - size // 2) ** 2 + (z - size // 3) ** 2 < spine_radius ** 2 volume[spine_mask] = 1000 # 模拟骨密度 # 模拟腹部器官(椭球结构) organ_axis = (size // 1.5, size // 0.8, size // 1.2) organ_mask = ((x - size // 2) / organ_axis[0]) ** 2 + \ ((y - size // 2) / organ_axis[1]) ** 2 + \ ((z - size // 2) / organ_axis[2]) ** 2 < 1 volume[organ_mask] = 40 # 软组织密度 # 添加噪声并生成切片 volume += np.random.normal(0, 15, volume.shape) return zoom(volume[:, size // 2, :], 0.5) # 冠状面切片降采样 # ===================输出修改后的完整代码

最新推荐

recommend-type

python numpy库np.percentile用法说明

`numpy.percentile` 是 Python 的科学计算库 numpy 中的一个功能强大的函数,用于计算数组数据的分位数。分位数是一种统计学上的概念,它将数据集分为相等的几部分,例如,第一四分位数(Q1)将数据分为前25%和后75%...
recommend-type

PLC控制变频器:三菱与汇川PLC通过485通讯板实现变频器正反转及调速控制

内容概要:本文介绍了如何利用三菱和汇川PLC通过485通讯板实现变频器的正转、反转及调速控制。主要内容涵盖硬件配置、软件编程、具体控制逻辑及上机测试。文中详细描述了各个步骤的操作方法和注意事项,包括关键寄存器的设置及其含义。程序中有详细的中文注释,便于理解和维护。最终通过上机测试验证系统的稳定性和可靠性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和变频器控制的专业人士。 使用场景及目标:适用于需要对电机进行精确控制的工业应用场景,如生产线、机械设备等。目标是提高控制系统灵活性和效率,确保系统稳定可靠。 其他说明:本文不仅提供理论指导,还附带实际操作经验,有助于读者更好地掌握相关技术和应用。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。
recommend-type

【进阶Python绘图】:掌握matplotlib坐标轴刻度间隔的高级技巧,让你的图表脱颖而出

# 摘要 本文系统地探讨了matplotlib库中坐标轴刻度间隔的定制与优化技术。首先概述了matplotlib坐标轴刻度间隔的基本概念及其在图表中的重要性,接