if (!val.intval && !pd->pd_connected && typec_mode >= POWER_SUPPLY_TYPEC_SOURCE_DEFAULT) { ret = power_supply_get_property(pd->usb_psy, POWER_SUPPLY_PROP_REAL_TYPE, &val); if (ret) { usbpd_err(&pd->dev, "Unable to read USB TYPE: %d\n", ret); return ret; } if (val.intval == POWER_SUPPLY_TYPE_USB || val.intval == POWER_SUPPLY_TYPE_USB_CDP || val.intval == POWER_SUPPLY_TYPE_USB_FLOAT) { usbpd_dbg(&pd->dev, "typec mode:%d type:%d\n", typec_mode, val.intval); pd->typec_mode = typec_mode; queue_work(pd->wq, &pd->start_periph_work); } return 0; }代码分析

时间: 2024-04-21 09:27:57 浏览: 234
这段代码是一个条件语句,可以将其分为以下几部分进行解释: 1. `!val.intval && !pd->pd_connected && typec_mode >= POWER_SUPPLY_TYPEC_SOURCE_DEFAULT`:这是条件语句的条件部分,表示当`val.intval`和`pd->pd_connected`都为0(即假),并且`typec_mode`大于等于`POWER_SUPPLY_TYPEC_SOURCE_DEFAULT`时,条件成立。 2. `ret = power_supply_get_property(pd->usb_psy, POWER_SUPPLY_PROP_REAL_TYPE, &val);`:如果条件成立,则执行这句代码,读取usb_psy的`POWER_SUPPLY_PROP_REAL_TYPE`属性,并将结果保存在`val`中。 3. `if (ret) {...}`:如果读取属性返回错误,则输出错误信息,并返回错误代码。 4. `if (val.intval == POWER_SUPPLY_TYPE_USB || val.intval == POWER_SUPPLY_TYPE_USB_CDP || val.intval == POWER_SUPPLY_TYPE_USB_FLOAT)`:如果`val.intval`等于`POWER_SUPPLY_TYPE_USB`、`POWER_SUPPLY_TYPE_USB_CDP`或`POWER_SUPPLY_TYPE_USB_FLOAT`中的任意一个,则执行下一步操作。 5. `pd->typec_mode = typec_mode;`:将`typec_mode`的值赋给`pd->typec_mode`。 6. `queue_work(pd->wq, &pd->start_periph_work);`:将`pd->start_periph_work`添加到`pd->wq`工作队列中,等待执行。 7. `return 0;`:返回0表示执行成功。 总的来说,这段代码的作用是在特定条件下,读取`usb_psy`的`POWER_SUPPLY_PROP_REAL_TYPE`属性,并将其值与`POWER_SUPPLY_TYPE_USB`、`POWER_SUPPLY_TYPE_USB_CDP`和`POWER_SUPPLY_TYPE_USB_FLOAT`中的任意一个进行比较,如果匹配成功则将`typec_mode`的值赋给`pd->typec_mode`,并将`pd->start_periph_work`添加到工作队列中等待执行。
阅读全文

相关推荐

/* AnalogReadSerial Reads an analog input on pin 0, prints the result to the Serial Monitor. Graphical representation is available using Serial Plotter (Tools > Serial Plotter menu). Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and ground. This example code is in the public domain. https://www.arduino.cc/en/Tutorial/BuiltInExamples/AnalogReadSerial */ #include <BluetoothSerial.h> #include <HardwareSerial.h> // 蓝牙配置 BluetoothSerial SerialBT; const char* btName = "ESP32_Remote"; // 蓝牙设备名称 // 硬件串口定义 HardwareSerial SerialHLK(1); // HLK-V20 使用UART1 HardwareSerial SerialUWB(2); // UWB模块 使用UART2 //BluetoothSerial BT; // 蓝牙对象 // 引脚定义 const int JOY_X = 36; // sensor_vp (GPIO36) const int JOY_Y = 39; // sensor_vn (GPIO39) const int HLK_TX = 34; // GPIO34 (ESP32的RX1) const int HLK_RX = 35; // GPIO35 (ESP32的TX1) const int UWB_TX = 25; // GPIO25 (ESP32的RX2) const int UWB_RX = 26; // GPIO26 (ESP32的TX2) / 摇杆阈值设置 const int THRESHOLD_HIGH = 2500; const int THRESHOLD_LOW = 1500; const int DEAD_ZONE = 100; // 中心死区范围 // 控制指令定义 enum CMD { CMD_STOP = 0, CMD_FORWARD, CMD_BACKWARD, CMD_LEFT, CMD_RIGHT }; // 全局变量 uint32_t lastSendTime = 0; const uint32_t SEND_INTERVAL = 200; // 指令发送间隔(ms) void setup() { // 初始化串口 Serial.begin(115200); // 初始化HLK-V20串口 SerialHLK.begin(9600, SERIAL_8N1, HLK_RX, HLK_TX); // 初始化UWB串口(根据实际模块配置) SerialUWB.begin(115200, SERIAL_8N1, UWB_RX, UWB_TX); // 初始化蓝牙 if(!SerialBT.begin(btName)){ Serial.println("蓝牙初始化失败!"); while(1); } Serial.println("蓝牙已启动,设备名称: " + String(btName)); // 配置ADC analogReadResolution(12); // 12位分辨率(0-4095) analogSetAttenuation(ADC_11db); // 设置ADC衰减 } void loop() { // 处理摇杆控制 handleJoystick(); // 处理语音指令 handleVoiceCommand(); // 处理UWB数据(按需实现) // handleUWBData(); delay(10); // 主循环延时 } // 处理摇杆输入 void handleJoystick() { static CMD lastCmd = CMD_STOP; if(millis() - lastSendTime < SEND_INTERVAL) return; int xVal = analogRead(JOY_X); int yVal = analogRead(JOY_Y); CMD currentCmd = parseJoystick(xVal, yVal); if(currentCmd != lastCmd){ sendBluetoothCommand(currentCmd); lastCmd = currentCmd; lastSendTime = millis(); } } // 解析摇杆值 CMD parseJoystick(int x, int y) { // X轴处理(左右方向) if(x > THRESHOLD_HIGH + DEAD_ZONE) return CMD_RIGHT; if(x < THRESHOLD_LOW - DEAD_ZONE) return CMD_LEFT; // Y轴处理(前后方向) if(y > THRESHOLD_HIGH + DEAD_ZONE) return CMD_FORWARD; if(y < THRESHOLD_LOW - DEAD_ZONE) return CMD_BACKWARD; return CMD_STOP; } // 处理语音指令 void handleVoiceCommand() { static String voiceBuffer; while(SerialHLK.available()){ char c = SerialHLK.read(); if(c == '\n' || c == '\r'){ if(voiceBuffer.length() > 0){ parseVoiceCommand(voiceBuffer); voiceBuffer = ""; } } else { voiceBuffer += c; } } } // 解析语音指令 void parseVoiceCommand(String cmd) { cmd.toLowerCase(); if(cmd.indexOf("forward") != -1){ sendBluetoothCommand(CMD_FORWARD); } else if(cmd.indexOf("backward") != -1){ sendBluetoothCommand(CMD_BACKWARD); } else if(cmd.indexOf("left") != -1){ sendBluetoothCommand(CMD_LEFT); } else if(cmd.indexOf("right") != -1){ sendBluetoothCommand(CMD_RIGHT); } else if(cmd.indexOf("stop") != -1){ sendBluetoothCommand(CMD_STOP); } } // 蓝牙指令发送 void sendBluetoothCommand(CMD command) { if(!SerialBT.connected()) return; String cmdStr; switch(command){ case CMD_FORWARD: cmdStr = "FWD"; break; case CMD_BACKWARD: cmdStr = "BWD"; break; case CMD_LEFT: cmdStr = "LFT"; break; case CMD_RIGHT: cmdStr = "RGT"; break; default: cmdStr = "STP"; } SerialBT.println(cmdStr); Serial.println("发送指令: " + cmdStr); }基于以上代码HLK-v20的动作参数控制详情中的数据,应该怎么定义

以下代码有什么错误static struct bflb_device_s uart0; extern void shell_init_with_task(struct bflb_device_s shell); static int btblecontroller_em_config(void) { extern uint8_t __LD_CONFIG_EM_SEL; volatile uint32_t em_size; em_size = (uint32_t)&__LD_CONFIG_EM_SEL; if (em_size == 0) { GLB_Set_EM_Sel(GLB_WRAM160KB_EM0KB); } else if (em_size == 321024) { GLB_Set_EM_Sel(GLB_WRAM128KB_EM32KB); } else if (em_size == 641024) { GLB_Set_EM_Sel(GLB_WRAM96KB_EM64KB); } else { GLB_Set_EM_Sel(GLB_WRAM96KB_EM64KB); } return 0; } void bt_enable_cb(int err) { if (!err) { bt_addr_le_t bt_addr; bt_get_local_public_address(&bt_addr); printf("BD_ADDR:(MSB)%02x:%02x:%02x:%02x:%02x:%02x(LSB) \n", bt_addr.a.val[5], bt_addr.a.val[4], bt_addr.a.val[3], bt_addr.a.val[2], bt_addr.a.val[1], bt_addr.a.val[0]); ble_cli_register(); } } int main(void) { board_init(); configASSERT((configMAX_PRIORITIES > 4)); uart0 = bflb_device_get_by_name("uart0"); shell_init_with_task(uart0); /* set ble controller EM Size / btblecontroller_em_config(); / Init rf */ if (0 != rfparam_init(0, NULL, 0)) { printf("PHY RF init failed!\r\n"); return 0; } // Initialize BLE controller #if defined(BL702) || defined(BL602) ble_controller_init(configMAX_PRIORITIES - 1); #else btble_controller_init(configMAX_PRIORITIES - 1); #endif // Initialize BLE Host stack hci_driver_init(); bt_enable(bt_enable_cb); vTaskStartScheduler();#define DEVICE_NAME "BL618_GATT" #define PROFILE_NUM 1 #define PROFILE_A_APP_ID 0 static void gap_event_handler(ble_event_t *event); static void gatt_event_handler(ble_event_t *event); int main(void) { bluetooth_init(gap_event_handler, gatt_event_handler); bluetooth_set_device_name(DEVICE_NAME); bluetooth_gatt_create_service(PROFILE_NUM); bluetooth_gatt_add_char(PROFILE_A_APP_ID, "CHAR_A", 0xFF01, 0x20, NULL); bluetooth_start_advertising(); while (1) { bluetooth_wait_for_event(); } return 0; } static void gap_event_handler(ble_event_t *event) { switch (event->type) { case BLE_GAP_EVENT_ADV_IND: { ble_gap_connect(&event->gap_event.adv_ind.address); break; } case BLE_GAP_EVENT_CONNECTED: { // 连接成功,可以开始 GATT 操作 break; } case BLE_GAP_EVENT_DISCONNECTED: { // 断开连接,重新开始广播 bluetooth_start_advertising(); break; } default: break; } } static void gatt_event_handler(ble_event_t *event) { switch (event->type) { case BLE_GATT_EVENT_READ: { // 处理读操作 break; } case BLE_GATT_EVENT_WRITE: { ble_err_t err = ble_gatt_server_send_indication(event->conn_handle, 0x1234, raw_data, sizeof(raw_data)); // 发送通知给主机 if (err != BLE_ERR_NONE) { // 发送失败,需要处理错误 break; } break; } default: break; } }

/****************************************************************************/ /* */ /* 音频测试:MIC_IN读取音频数据,从LINE_OUT播出 */ /* */ /* 2014年7月1日 */ /* */ /****************************************************************************/ #include "TL6748.h" // 创龙 DSP6748 开发板相关声明 #include "edma_event.h" #include "interrupt.h" #include "soc_OMAPL138.h" #include "hw_syscfg0_OMAPL138.h" #include "codecif.h" #include "mcasp.h" #include "aic31.h" #include "edma.h" #include "psc.h" #include "uartStdio.h" #include <string.h> /****************************************************************************** ** 宏定义 *******************************************************************************/ /* ** Values which are configurable */ /* Slot size to send/receive data */ #define SLOT_SIZE (16u) /* Word size to send/receive data. Word size <= Slot size */ #define WORD_SIZE (16u) /* Sampling Rate which will be used by both transmit and receive sections */ #define SAMPLING_RATE (48000u) /* Number of channels, L & R */ #define NUM_I2S_CHANNELS (2u) /* Number of samples to be used per audio buffer */ #define NUM_SAMPLES_PER_AUDIO_BUF (2000u) /* Number of buffers used per tx/rx */ #define NUM_BUF (3u) /* Number of linked parameter set used per tx/rx */ #define NUM_PAR (2u) /* Specify where the parameter set starting is */ #define PAR_ID_START (40u) /* Number of samples in loop buffer */ #define NUM_SAMPLES_LOOP_BUF (10u) /* AIC3106 codec address */ #define I2C_SLAVE_CODEC_AIC31 (0x18u) /* Interrupt channels to map in AINTC */ #define INT_CHANNEL_I2C (2u) #define INT_CHANNEL_MCASP (2u) #define INT_CHANNEL_EDMACC (2u) /* McASP Serializer for Receive */ #define MCASP_XSER_RX (12u) /* McASP Serializer for Transmit */ #define MCASP_XSER_TX (11u) /* ** Below Macros are calculated based on the above inputs */ #define NUM_TX_SERIALIZERS ((NUM_I2S_CHANNELS >> 1) \ + (NUM_I2S_CHANNELS & 0x01)) #define NUM_RX_SERIALIZERS ((NUM_I2S_CHANNELS >> 1) \ + (NUM_I2S_CHANNELS & 0x01)) #define I2S_SLOTS ((1 << NUM_I2S_CHANNELS) - 1) #define BYTES_PER_SAMPLE ((WORD_SIZE >> 3) \ * NUM_I2S_CHANNELS) #define AUDIO_BUF_SIZE (NUM_SAMPLES_PER_AUDIO_BUF \ * BYTES_PER_SAMPLE) #define TX_DMA_INT_ENABLE (EDMA3CC_OPT_TCC_SET(1) | (1 \ << EDMA3CC_OPT_TCINTEN_SHIFT)) #define RX_DMA_INT_ENABLE (EDMA3CC_OPT_TCC_SET(0) | (1 \ << EDMA3CC_OPT_TCINTEN_SHIFT)) #define PAR_RX_START (PAR_ID_START) #define PAR_TX_START (PAR_RX_START + NUM_PAR) /* ** Definitions which are not configurable */ #define SIZE_PARAMSET (32u) #define OPT_FIFO_WIDTH (0x02 << 8u) /****************************************************************************** ** 函数原型声明 *******************************************************************************/ static void McASPErrorIsr(void); static void McASPErrorIntSetup(void); static void AIC31I2SConfigure(void); static void McASPI2SConfigure(void); static void McASPTxDMAComplHandler(void); static void McASPRxDMAComplHandler(void); static void EDMA3CCComplIsr(void); static void I2SDataTxRxActivate(void); static void I2SDMAParamInit(void); static void ParamTxLoopJobSet(unsigned short parId); static void BufferTxDMAActivate(unsigned int txBuf, unsigned short numSamples, unsigned short parToUpdate, unsigned short linkAddr); static void BufferRxDMAActivate(unsigned int rxBuf, unsigned short parId, unsigned short parLink); /****************************************************************************/ /* 全局变量 */ /****************************************************************************/ static unsigned char loopBuf[NUM_SAMPLES_LOOP_BUF * BYTES_PER_SAMPLE] = {0}; /* ** Transmit buffers. If any new buffer is to be added, define it here and ** update the NUM_BUF. */ static unsigned char txBuf0[AUDIO_BUF_SIZE]; static unsigned char txBuf1[AUDIO_BUF_SIZE]; static unsigned char txBuf2[AUDIO_BUF_SIZE]; /* ** Receive buffers. If any new buffer is to be added, define it here and ** update the NUM_BUF. */ static unsigned char rxBuf0[AUDIO_BUF_SIZE]; static unsigned char rxBuf1[AUDIO_BUF_SIZE]; static unsigned char rxBuf2[AUDIO_BUF_SIZE]; /* ** Next buffer to receive data. The data will be received in this buffer. */ static volatile unsigned int nxtBufToRcv = 0; /* ** The RX buffer which filled latest. */ static volatile unsigned int lastFullRxBuf = 0; /* ** The offset of the paRAM ID, from the starting of the paRAM set. */ static volatile unsigned short parOffRcvd = 0; /* ** The offset of the paRAM ID sent, from starting of the paRAM set. */ static volatile unsigned short parOffSent = 0; /* ** The offset of the paRAM ID to be sent next, from starting of the paRAM set. */ static volatile unsigned short parOffTxToSend = 0; /* ** The transmit buffer which was sent last. */ static volatile unsigned int lastSentTxBuf = NUM_BUF - 1; /* Array of receive buffer pointers */ static unsigned int const rxBufPtr[NUM_BUF] = { (unsigned int) rxBuf0, (unsigned int) rxBuf1, (unsigned int) rxBuf2 }; /* Array of transmit buffer pointers */ static unsigned int const txBufPtr[NUM_BUF] = { (unsigned int) txBuf0, (unsigned int) txBuf1, (unsigned int) txBuf2 }; /* ** Default paRAM for Transmit section. This will be transmitting from ** a loop buffer. */ static struct EDMA3CCPaRAMEntry const txDefaultPar = { (unsigned int)(EDMA3CC_OPT_DAM | (0x02 << 8u)), /* Opt field */ (unsigned int)loopBuf, /* source address */ (unsigned short)(BYTES_PER_SAMPLE), /* aCnt */ (unsigned short)(NUM_SAMPLES_LOOP_BUF), /* bCnt */ (unsigned int) SOC_MCASP_0_DATA_REGS, /* dest address */ (short) (BYTES_PER_SAMPLE), /* source bIdx */ (short)(0), /* dest bIdx */ (unsigned short)(PAR_TX_START * SIZE_PARAMSET), /* link address */ (unsigned short)(0), /* bCnt reload value */ (short)(0), /* source cIdx */ (short)(0), /* dest cIdx */ (unsigned short)1 /* cCnt */ }; /* ** Default paRAM for Receive section. */ static struct EDMA3CCPaRAMEntry const rxDefaultPar = { (unsigned int)(EDMA3CC_OPT_SAM | (0x02 << 8u)), /* Opt field */ (unsigned int)SOC_MCASP_0_DATA_REGS, /* source address */ (unsigned short)(BYTES_PER_SAMPLE), /* aCnt */ (unsigned short)(1), /* bCnt */ (unsigned int)rxBuf0, /* dest address */ (short) (0), /* source bIdx */ (short)(BYTES_PER_SAMPLE), /* dest bIdx */ (unsigned short)(PAR_RX_START * SIZE_PARAMSET), /* link address */ (unsigned short)(0), /* bCnt reload value */ (short)(0), /* source cIdx */ (short)(0), /* dest cIdx */ (unsigned short)1 /* cCnt */ }; /****************************************************************************/ /* 函数声明 */ /****************************************************************************/ static void ParamTxLoopJobSet(unsigned short parId); static void I2SDMAParamInit(void); static void AIC31I2SConfigure(void); static void McASPI2SConfigure(void); static void EDMA3IntSetup(void); static void McASPErrorIntSetup(void); static void I2SDataTxRxActivate(void); void BufferTxDMAActivate(unsigned int txBuf, unsigned short numSamples, unsigned short parId, unsigned short linkPar); static void BufferRxDMAActivate(unsigned int rxBuf, unsigned short parId, unsigned short parLink); static void McASPRxDMAComplHandler(void); static void McASPTxDMAComplHandler(void); static void EDMA3CCComplIsr(void); static void McASPErrorIsr(void); /****************************************************************************/ /* 主函数 */ /****************************************************************************/ int main(void) { unsigned short parToSend; unsigned short parToLink; UARTStdioInit(); UARTPuts("\r\n ============Test Start===========.\r\n", -1); UARTPuts("Welcome to StarterWare Audio_MIC_In Demo application.\r\n\r\n", -1); UARTPuts("This application loops back the input at MIC_IN of the EVM to the LINE_OUT of the EVM\r\n\r\n", -1); /* Set up pin mux for I2C module 0 */ I2CPinMuxSetup(0); McASPPinMuxSetup(); /* Power up the McASP module */ PSCModuleControl(SOC_PSC_1_REGS, HW_PSC_MCASP0, PSC_POWERDOMAIN_ALWAYS_ON, PSC_MDCTL_NEXT_ENABLE); /* Power up EDMA3CC_0 and EDMA3TC_0 */ PSCModuleControl(SOC_PSC_0_REGS, HW_PSC_CC0, PSC_POWERDOMAIN_ALWAYS_ON, PSC_MDCTL_NEXT_ENABLE); PSCModuleControl(SOC_PSC_0_REGS, HW_PSC_TC0, PSC_POWERDOMAIN_ALWAYS_ON, PSC_MDCTL_NEXT_ENABLE); #ifdef _TMS320C6X // Initialize the DSP interrupt controller IntDSPINTCInit(); #else /* Initialize the ARM Interrupt Controller.*/ IntAINTCInit(); #endif /* Initialize the I2C 0 interface for the codec AIC31 */ I2CCodecIfInit(SOC_I2C_0_REGS, INT_CHANNEL_I2C, I2C_SLAVE_CODEC_AIC31); EDMA3Init(SOC_EDMA30CC_0_REGS, 0); EDMA3IntSetup(); McASPErrorIntSetup(); #ifdef _TMS320C6X IntGlobalEnable(); #else /* Enable the interrupts generation at global level */ IntMasterIRQEnable(); IntGlobalEnable(); IntIRQEnable(); #endif /* ** Request EDMA channels. Channel 0 is used for reception and ** Channel 1 is used for transmission */ EDMA3RequestChannel(SOC_EDMA30CC_0_REGS, EDMA3_CHANNEL_TYPE_DMA, EDMA3_CHA_MCASP0_TX, EDMA3_CHA_MCASP0_TX, 0); EDMA3RequestChannel(SOC_EDMA30CC_0_REGS, EDMA3_CHANNEL_TYPE_DMA, EDMA3_CHA_MCASP0_RX, EDMA3_CHA_MCASP0_RX, 0); /* Initialize the DMA parameters */ I2SDMAParamInit(); /* Configure the Codec for I2S mode */ AIC31I2SConfigure(); /* Configure the McASP for I2S */ McASPI2SConfigure(); /* Activate the audio transmission and reception */ I2SDataTxRxActivate(); /* ** Looop forever. if a new buffer is received, the lastFullRxBuf will be ** updated in the rx completion ISR. if it is not the lastSentTxBuf, ** buffer is to be sent. This has to be mapped to proper paRAM set. */ while(1) { if(lastFullRxBuf != lastSentTxBuf) { /* ** Start the transmission from the link paramset. The param set ** 1 will be linked to param set at PAR_TX_START. So do not ** update paRAM set1. */ parToSend = PAR_TX_START + (parOffTxToSend % NUM_PAR); parOffTxToSend = (parOffTxToSend + 1) % NUM_PAR; parToLink = PAR_TX_START + parOffTxToSend; lastSentTxBuf = (lastSentTxBuf + 1) % NUM_BUF; /* Copy the buffer */ memcpy((void *)txBufPtr[lastSentTxBuf], (void *)rxBufPtr[lastFullRxBuf], AUDIO_BUF_SIZE); /* ** Send the buffer by setting the DMA params accordingly. ** Here the buffer to send and number of samples are passed as ** parameters. This is important, if only transmit section ** is to be used. */ BufferTxDMAActivate(lastSentTxBuf, NUM_SAMPLES_PER_AUDIO_BUF, (unsigned short)parToSend, (unsigned short)parToLink); } } } /* ** Assigns loop job for a parameter set */ static void ParamTxLoopJobSet(unsigned short parId) { EDMA3CCPaRAMEntry paramSet; memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET - 2); /* link the paRAM to itself */ paramSet.linkAddr = parId * SIZE_PARAMSET; EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, parId, ¶mSet); } /* ** Initializes the DMA parameters. ** The RX basic paRAM set(channel) is 0 and TX basic paRAM set (channel) is 1. ** ** The RX paRAM set 0 will be initialized to receive data in the rx buffer 0. ** The transfer completion interrupt will not be enabled for paRAM set 0; ** paRAM set 0 will be linked to linked paRAM set starting (PAR_RX_START) of RX. ** and further reception only happens via linked paRAM set. ** For example, if the PAR_RX_START value is 40, and the number of paRAMS is 2, ** reception paRAM set linking will be initialized as 0-->40-->41-->40 ** ** The TX paRAM sets will be initialized to transmit from the loop buffer. ** The size of the loop buffer can be configured. ** The transfer completion interrupt will not be enabled for paRAM set 1; ** paRAM set 1 will be linked to linked paRAM set starting (PAR_TX_START) of TX. ** All other paRAM sets will be linked to itself. ** and further transmission only happens via linked paRAM set. ** For example, if the PAR_RX_START value is 42, and the number of paRAMS is 2, ** So transmission paRAM set linking will be initialized as 1-->42-->42, 43->43. */ static void I2SDMAParamInit(void) { EDMA3CCPaRAMEntry paramSet; int idx; /* Initialize the 0th paRAM set for receive */ memcpy(¶mSet, &rxDefaultPar, SIZE_PARAMSET - 2); EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX, ¶mSet); /* further paramsets, enable interrupt */ paramSet.opt |= RX_DMA_INT_ENABLE; for(idx = 0 ; idx < NUM_PAR; idx++) { paramSet.destAddr = rxBufPtr[idx]; paramSet.linkAddr = (PAR_RX_START + ((idx + 1) % NUM_PAR)) * (SIZE_PARAMSET); paramSet.bCnt = NUM_SAMPLES_PER_AUDIO_BUF; /* ** for the first linked paRAM set, start receiving the second ** sample only since the first sample is already received in ** rx buffer 0 itself. */ if( 0 == idx) { paramSet.destAddr += BYTES_PER_SAMPLE; paramSet.bCnt -= BYTES_PER_SAMPLE; } EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, (PAR_RX_START + idx), ¶mSet); } /* Initialize the required variables for reception */ nxtBufToRcv = idx % NUM_BUF; lastFullRxBuf = NUM_BUF - 1; parOffRcvd = 0; /* Initialize the 1st paRAM set for transmit */ memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET); EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX, ¶mSet); /* rest of the params, enable loop job */ for(idx = 0 ; idx < NUM_PAR; idx++) { ParamTxLoopJobSet(PAR_TX_START + idx); } /* Initialize the variables for transmit */ parOffSent = 0; lastSentTxBuf = NUM_BUF - 1; } /* ** Function to configure the codec for I2S mode */ static void AIC31I2SConfigure(void) { volatile unsigned int delay = 0xFFF; AIC31Reset(SOC_I2C_0_REGS); while(delay--); /* Configure the data format and sampling rate */ AIC31DataConfig(SOC_I2C_0_REGS, AIC31_DATATYPE_I2S, SLOT_SIZE, 0); AIC31SampleRateConfig(SOC_I2C_0_REGS, AIC31_MODE_BOTH, SAMPLING_RATE); /* Initialize both ADC and DAC */ AIC31ADCInit(SOC_I2C_0_REGS); AIC31DACInit(SOC_I2C_0_REGS); } /* ** Configures the McASP Transmit Section in I2S mode. */ static void McASPI2SConfigure(void) { McASPRxReset(SOC_MCASP_0_CTRL_REGS); McASPTxReset(SOC_MCASP_0_CTRL_REGS); /* Enable the FIFOs for DMA transfer */ McASPReadFifoEnable(SOC_MCASP_0_FIFO_REGS, 1, 1); McASPWriteFifoEnable(SOC_MCASP_0_FIFO_REGS, 1, 1); /* Set I2S format in the transmitter/receiver format units */ McASPRxFmtI2SSet(SOC_MCASP_0_CTRL_REGS, WORD_SIZE, SLOT_SIZE, MCASP_RX_MODE_DMA); McASPTxFmtI2SSet(SOC_MCASP_0_CTRL_REGS, WORD_SIZE, SLOT_SIZE, MCASP_TX_MODE_DMA); /* Configure the frame sync. I2S shall work in TDM format with 2 slots */ McASPRxFrameSyncCfg(SOC_MCASP_0_CTRL_REGS, 2, MCASP_RX_FS_WIDTH_WORD, MCASP_RX_FS_EXT_BEGIN_ON_FALL_EDGE); McASPTxFrameSyncCfg(SOC_MCASP_0_CTRL_REGS, 2, MCASP_TX_FS_WIDTH_WORD, MCASP_TX_FS_EXT_BEGIN_ON_RIS_EDGE); /* configure the clock for receiver */ McASPRxClkCfg(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLK_EXTERNAL, 0, 0); McASPRxClkPolaritySet(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLK_POL_RIS_EDGE); McASPRxClkCheckConfig(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLKCHCK_DIV32, 0x00, 0xFF); /* configure the clock for transmitter */ McASPTxClkCfg(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLK_EXTERNAL, 0, 0); McASPTxClkPolaritySet(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLK_POL_FALL_EDGE); McASPTxClkCheckConfig(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLKCHCK_DIV32, 0x00, 0xFF); /* Enable synchronization of RX and TX sections */ McASPTxRxClkSyncEnable(SOC_MCASP_0_CTRL_REGS); /* Enable the transmitter/receiver slots. I2S uses 2 slots */ McASPRxTimeSlotSet(SOC_MCASP_0_CTRL_REGS, I2S_SLOTS); McASPTxTimeSlotSet(SOC_MCASP_0_CTRL_REGS, I2S_SLOTS); /* ** Set the serializers, Currently only one serializer is set as ** transmitter and one serializer as receiver. */ McASPSerializerRxSet(SOC_MCASP_0_CTRL_REGS, MCASP_XSER_RX); McASPSerializerTxSet(SOC_MCASP_0_CTRL_REGS, MCASP_XSER_TX); /* ** Configure the McASP pins ** Input - Frame Sync, Clock and Serializer Rx ** Output - Serializer Tx is connected to the input of the codec */ McASPPinMcASPSet(SOC_MCASP_0_CTRL_REGS, 0xFFFFFFFF); McASPPinDirOutputSet(SOC_MCASP_0_CTRL_REGS,MCASP_PIN_AXR(MCASP_XSER_TX)); McASPPinDirInputSet(SOC_MCASP_0_CTRL_REGS, MCASP_PIN_AFSX | MCASP_PIN_ACLKX | MCASP_PIN_AHCLKX | MCASP_PIN_AXR(MCASP_XSER_RX)); /* Enable error interrupts for McASP */ McASPTxIntEnable(SOC_MCASP_0_CTRL_REGS, MCASP_TX_DMAERROR | MCASP_TX_CLKFAIL | MCASP_TX_SYNCERROR | MCASP_TX_UNDERRUN); McASPRxIntEnable(SOC_MCASP_0_CTRL_REGS, MCASP_RX_DMAERROR | MCASP_RX_CLKFAIL | MCASP_RX_SYNCERROR | MCASP_RX_OVERRUN); } /* ** Sets up the interrupts for EDMA in AINTC */ static void EDMA3IntSetup(void) { #ifdef _TMS320C6X IntRegister(C674X_MASK_INT5, EDMA3CCComplIsr); IntEventMap(C674X_MASK_INT5, SYS_INT_EDMA3_0_CC0_INT1); IntEnable(C674X_MASK_INT5); #else IntRegister(SYS_INT_CCINT0, EDMA3CCComplIsr); IntChannelSet(SYS_INT_CCINT0, INT_CHANNEL_EDMACC); IntSystemEnable(SYS_INT_CCINT0); #endif } /* ** Sets up the error interrupts for McASP in AINTC */ static void McASPErrorIntSetup(void) { #ifdef _TMS320C6X IntRegister(C674X_MASK_INT6, McASPErrorIsr); IntEventMap(C674X_MASK_INT6, SYS_INT_MCASP0_INT); IntEnable(C674X_MASK_INT6); #else /* Register the error ISR for McASP */ IntRegister(SYS_INT_MCASPINT, McASPErrorIsr); IntChannelSet(SYS_INT_MCASPINT, INT_CHANNEL_MCASP); IntSystemEnable(SYS_INT_MCASPINT); #endif } /* ** Activates the data transmission/reception ** The DMA parameters shall be ready before calling this function. */ static void I2SDataTxRxActivate(void) { /* Start the clocks */ McASPRxClkStart(SOC_MCASP_0_CTRL_REGS, MCASP_RX_CLK_EXTERNAL); McASPTxClkStart(SOC_MCASP_0_CTRL_REGS, MCASP_TX_CLK_EXTERNAL); /* Enable EDMA for the transfer */ EDMA3EnableTransfer(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX, EDMA3_TRIG_MODE_EVENT); EDMA3EnableTransfer(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX, EDMA3_TRIG_MODE_EVENT); /* Activate the serializers */ McASPRxSerActivate(SOC_MCASP_0_CTRL_REGS); McASPTxSerActivate(SOC_MCASP_0_CTRL_REGS); /* make sure that the XDATA bit is cleared to zero */ while(McASPTxStatusGet(SOC_MCASP_0_CTRL_REGS) & MCASP_TX_STAT_DATAREADY); /* Activate the state machines */ McASPRxEnable(SOC_MCASP_0_CTRL_REGS); McASPTxEnable(SOC_MCASP_0_CTRL_REGS); } /* ** Activates the DMA transfer for a parameterset from the given buffer. */ void BufferTxDMAActivate(unsigned int txBuf, unsigned short numSamples, unsigned short parId, unsigned short linkPar) { EDMA3CCPaRAMEntry paramSet; /* Copy the default paramset */ memcpy(¶mSet, &txDefaultPar, SIZE_PARAMSET - 2); /* Enable completion interrupt */ paramSet.opt |= TX_DMA_INT_ENABLE; paramSet.srcAddr = txBufPtr[txBuf]; paramSet.linkAddr = linkPar * SIZE_PARAMSET; paramSet.bCnt = numSamples; EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, parId, ¶mSet); } /* ** Activates the DMA transfer for a parameter set from the given buffer. */ static void BufferRxDMAActivate(unsigned int rxBuf, unsigned short parId, unsigned short parLink) { EDMA3CCPaRAMEntry paramSet; /* Copy the default paramset */ memcpy(¶mSet, &rxDefaultPar, SIZE_PARAMSET - 2); /* Enable completion interrupt */ paramSet.opt |= RX_DMA_INT_ENABLE; paramSet.destAddr = rxBufPtr[rxBuf]; paramSet.bCnt = NUM_SAMPLES_PER_AUDIO_BUF; paramSet.linkAddr = parLink * SIZE_PARAMSET ; EDMA3SetPaRAM(SOC_EDMA30CC_0_REGS, parId, ¶mSet); } /* ** This function will be called once receive DMA is completed */ static void McASPRxDMAComplHandler(void) { unsigned short nxtParToUpdate; /* ** Update lastFullRxBuf to indicate a new buffer reception ** is completed. */ lastFullRxBuf = (lastFullRxBuf + 1) % NUM_BUF; nxtParToUpdate = PAR_RX_START + parOffRcvd; parOffRcvd = (parOffRcvd + 1) % NUM_PAR; /* ** Update the DMA parameters for the received buffer to receive ** further data in proper buffer */ BufferRxDMAActivate(nxtBufToRcv, nxtParToUpdate, PAR_RX_START + parOffRcvd); /* update the next buffer to receive data */ nxtBufToRcv = (nxtBufToRcv + 1) % NUM_BUF; } /* ** This function will be called once transmit DMA is completed */ static void McASPTxDMAComplHandler(void) { ParamTxLoopJobSet((unsigned short)(PAR_TX_START + parOffSent)); parOffSent = (parOffSent + 1) % NUM_PAR; } /* ** EDMA transfer completion ISR */ static void EDMA3CCComplIsr(void) { #ifdef _TMS320C6X IntEventClear(SYS_INT_EDMA3_0_CC0_INT1); #else IntSystemStatusClear(SYS_INT_CCINT0); #endif /* Check if receive DMA completed */ if(EDMA3GetIntrStatus(SOC_EDMA30CC_0_REGS) & (1 << EDMA3_CHA_MCASP0_RX)) { /* Clear the interrupt status for the 0th channel */ EDMA3ClrIntr(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_RX); McASPRxDMAComplHandler(); } /* Check if transmit DMA completed */ if(EDMA3GetIntrStatus(SOC_EDMA30CC_0_REGS) & (1 << EDMA3_CHA_MCASP0_TX)) { /* Clear the interrupt status for the first channel */ EDMA3ClrIntr(SOC_EDMA30CC_0_REGS, EDMA3_CHA_MCASP0_TX); McASPTxDMAComplHandler(); } } /* ** Error ISR for McASP */ static void McASPErrorIsr(void) { #ifdef _TMS320C6X IntEventClear(SYS_INT_MCASP0_INT); #else IntSystemStatusClear(SYS_INT_MCASPINT); #endif ; /* Perform any error handling here.*/ } /***************************** End Of File ***********************************/ 将以上代码和以下代码合在一起:#include "math.h" #include "mathlib.h" #include "dsplib.h" #define PI 3.1415926535 #define F_TOL (1e-06) #define Tn 1024 #define Fs 48000.0 #define N 132 // 滤波器阶数(偶数) #define FilterCount 5 const float F1s[FilterCount] = {20.0, 400.0, 1200.0, 4000.0, 13000.0}; const float F2s[FilterCount] = {400.0, 1200.0, 4000.0, 13000.0, 20000.0}; #pragma DATA_ALIGN(FIR_In, 8); float FIR_In[Tn]; #pragma DATA_ALIGN(FIR_Outs, 8); float FIR_Outs[FilterCount][Tn]; #pragma DATA_ALIGN(FIR_CombinedOut, 8); float FIR_CombinedOut[Tn]; #pragma DATA_ALIGN(Bs, 8); float Bs[FilterCount][N]; void FIRTest(void); void design_blackman_bandpass_fir(float *h, int n, float f1, float f2, float fs); void blackman_window(float *w, int n); void normalize_filter_response(float *h, int n, float f1, float f2, float fs); int main(void) { int i; // 声明循环变量 for (i = 0; i < FilterCount; i++) { design_blackman_bandpass_fir(Bs[i], N, F1s[i], F2s[i], Fs); } FIRTest(); return 0; } void blackman_window(float *w, int n) { int i; // 声明循环变量 for (i = 0; i < n; i++) { w[i] = 0.42f - 0.5f * cosf(2.0f * PI * i / (n - 1)) + 0.08f * cosf(4.0f * PI * i / (n - 1)); } } void normalize_filter_response(float *h, int n, float f1, float f2, float fs) { float center_freq = (f1 + f2) / 2.0f; float omega = 2.0f * PI * center_freq / fs; float real_gain = 0.0f; int i; // 声明循环变量 for (i = 0; i < n; i++) { real_gain += h[i] * cosf(omega * (i - (n-1)/2.0f)); } if (fabsf(real_gain) > F_TOL) { for (i = 0; i < n; i++) { h[i] /= real_gain; } } } void design_blackman_bandpass_fir(float *h, int n, float f1, float f2, float fs) { float w[N]; float fc1 = f1 / fs; float fc2 = f2 / fs; int i; // 声明循环变量 blackman_window(w, n); for (i = 0; i < n; i++) { float m = i - (n - 1)/2.0f; h[i] = (fabsf(m) < F_TOL) ? 2.0f * (fc2 - fc1) : (sinf(2.0f * PI * fc2 * m) - sinf(2.0f * PI * fc1 * m)) / (PI * m); h[i] *= w[i]; } normalize_filter_response(h, n, f1, f2, fs); } void FIRTest(void) { int i, j; // 声明循环变量 // 生成测试信号 - 每个频段一个测试频率 for (i = 0; i < Tn; i++) { float t = (float)i / Fs; FIR_In[i] = 5.0f * sinf(2.0f * PI * 10.0f * t) + 5.0f * sinf(2.0f * PI * 15000.0f * t)+ 5.0f * sinf(2.0f * PI * 25000.0f * t); } // 初始化并处理滤波器输出 for (i = 0; i < Tn; i++) { FIR_CombinedOut[i] = 0.0f; } for (j = 0; j < FilterCount; j++) { DSPF_sp_fir_r2(FIR_In, Bs[j], FIR_Outs[j], N, Tn); // 累加各滤波器输出 for (i = 0; i < Tn; i++) { FIR_CombinedOut[i] += FIR_Outs[j][i]; } } } 将测试信号去掉,合成后的代码输入就是音频输入,输出就是音频输出,滤波器来处理数据

大家在看

recommend-type

超实用zimo21取字模软件.7z

超实用zimo21取字模软件.7z
recommend-type

AAA2.5及汉化补丁

Advanced Aircraft Analysis V2.5.1.53 (3A) 在win7 64位上安装测试。有注册机和安装视频。支持winxp和win732位和64位系统。 Darcorp Advanced Aircraft Analysis V2.5.1.53 (AAA) 软件是一款面向于高级用户的飞机设计和仿真分析软件,目前广泛应用于数十个国家的各种机构,已然成为飞机设计、开发、稳定性分析以及飞行控制的工业标准软件。适用于 FAR23、FAR25、UAV无人驾驶飞机与 Military 规范,为全球飞机公司(如波音公司)、政府部门(如 FAA)与学校采用于飞机初步设计、分析、与 3-D 绘图的一套完整软件工具。 Advanced Aircraft Analysis (AAA) 是行业标准的飞机设计,稳定性和控制分析软件。 安装在超过45个国家,AAA所使用的主要航空工程大学,飞机制造商和世界各地的军事组织。 Advanced Aircraft Analysis(AAA)是行业标准的飞机设计 AAA提供了一个功能强大的框架,以支持飞机初步设计迭代和非独特的过程。 AAA计划允许学生和初步设计工程师从早期的大小通过开环和闭环动态稳定性和灵敏度分析的重量,而该机的配置工作在监管和成本的限制。
recommend-type

MultiModalSA:CMU-MOSEI的多模态情感分析架构

多模态 CMU-MOSEI的多模态情感分析体系结构。 描述 该信息库包含四种多模式体系结构以及用于CMU-MOSEI的情感分析的相关培训和测试功能。 在数据文件夹中,提供了转录和标签,以用于的标准培训,验证和测试语句。 可以通过以下链接下载BERT嵌入(文本模式),COVAREP功能(音频模式)和FACET功能(视频模式): BERT嵌入: ://drive.google.com/file/d/13y2xoO1YlDrJ4Be2X6kjtMzfRBs7tBRg/view?usp COVAREP: ://drive.google.com/file/d/1XpRN8xoEMKxubBHaNyEivgRbnVY2iazu/view usp sharing 脸部表情: ://drive.google.com/file/d/1BSjMfKm7FQM8n3HHG5Gn9-dTifULC
recommend-type

MMC.rar_NEC mmc-1_nec-m

NEC控制芯片,09电子设计大赛必用,很好的资料,虽然不是我写的,但是肯定有用
recommend-type

TI-LP5009.pdf

TI-LP5009.pdf

最新推荐

recommend-type

(完整版)基因工程药物干扰素的制备.ppt

(完整版)基因工程药物干扰素的制备.ppt
recommend-type

建施-拓力泰-施工图.dwg

建施-拓力泰-施工图.dwg
recommend-type

(完整word版)基于STC89C52单片机的数字时钟设计.doc

(完整word版)基于STC89C52单片机的数字时钟设计.doc
recommend-type

no-client子项目的资源文件

包含 element-plus-2.4.2.css 文件,element-plus-2.4.2.js 文件和 vue-3.3.7.js 文件
recommend-type

(完整版)房建项目进度网络图.xls

(完整版)房建项目进度网络图.xls
recommend-type

Web2.0新特征图解解析

Web2.0是互联网发展的一个阶段,相对于早期的Web1.0时代,Web2.0具有以下显著特征和知识点: ### Web2.0的定义与特点 1. **用户参与内容生产**: - Web2.0的一个核心特征是用户不再是被动接收信息的消费者,而是成为了内容的生产者。这标志着“读写网络”的开始,用户可以在网络上发布信息、评论、博客、视频等内容。 2. **信息个性化定制**: - Web2.0时代,用户可以根据自己的喜好对信息进行个性化定制,例如通过RSS阅读器订阅感兴趣的新闻源,或者通过社交网络筛选自己感兴趣的话题和内容。 3. **网页技术的革新**: - 随着技术的发展,如Ajax、XML、JSON等技术的出现和应用,使得网页可以更加动态地与用户交互,无需重新加载整个页面即可更新数据,提高了用户体验。 4. **长尾效应**: - 在Web2.0时代,即使是小型或专业化的内容提供者也有机会通过互联网获得关注,这体现了长尾理论,即在网络环境下,非主流的小众产品也有机会与主流产品并存。 5. **社交网络的兴起**: - Web2.0推动了社交网络的发展,如Facebook、Twitter、微博等平台兴起,促进了信息的快速传播和人际交流方式的变革。 6. **开放性和互操作性**: - Web2.0时代倡导开放API(应用程序编程接口),允许不同的网络服务和应用间能够相互通信和共享数据,提高了网络的互操作性。 ### Web2.0的关键技术和应用 1. **博客(Blog)**: - 博客是Web2.0的代表之一,它支持用户以日记形式定期更新内容,并允许其他用户进行评论。 2. **维基(Wiki)**: - 维基是另一种形式的集体协作项目,如维基百科,任何用户都可以编辑网页内容,共同构建一个百科全书。 3. **社交网络服务(Social Networking Services)**: - 社交网络服务如Facebook、Twitter、LinkedIn等,促进了个人和组织之间的社交关系构建和信息分享。 4. **内容聚合器(RSS feeds)**: - RSS技术让用户可以通过阅读器软件快速浏览多个网站更新的内容摘要。 5. **标签(Tags)**: - 用户可以为自己的内容添加标签,便于其他用户搜索和组织信息。 6. **视频分享(Video Sharing)**: - 视频分享网站如YouTube,用户可以上传、分享和评论视频内容。 ### Web2.0与网络营销 1. **内容营销**: - Web2.0为内容营销提供了良好的平台,企业可以通过撰写博客文章、发布视频等内容吸引和维护用户。 2. **社交媒体营销**: - 社交网络的广泛使用,使得企业可以通过社交媒体进行品牌传播、产品推广和客户服务。 3. **口碑营销**: - 用户生成内容、评论和分享在Web2.0时代更易扩散,为口碑营销提供了土壤。 4. **搜索引擎优化(SEO)**: - 随着内容的多样化和个性化,SEO策略也必须适应Web2.0特点,注重社交信号和用户体验。 ### 总结 Web2.0是对互联网发展的一次深刻变革,它不仅仅是一个技术变革,更是人们使用互联网的习惯和方式的变革。Web2.0的时代特征与Web1.0相比,更加注重用户体验、社交互动和信息的个性化定制。这些变化为网络营销提供了新的思路和平台,也对企业的市场策略提出了新的要求。通过理解Web2.0的特点和应用,企业可以更好地适应互联网的发展趋势,实现与用户的深度互动和品牌的有效传播。
recommend-type

【C++编程新手必看】:一步步带你制作出风靡全球的“别踩白块儿”游戏

# 摘要 本文全面介绍C++编程在游戏开发中的应用,涵盖了从基础概念到具体实现的多个方面。首先,文章提供了游戏开发环境的搭建指南,包括编译器配置和开发工具的选择。随后,重点介绍了游戏主循环和基本框架的构建,强调了事件处理和渲染技术。在游戏逻辑和交互设计方面,本文阐述了界面布局、事件响应和游戏状态管理的核心实现。为了提升游戏体验,本文还探讨了添加音效和背景音乐以及开发高级游戏特性的方法。最后,文章介绍了性能优化和跨平台发布的过程,包括游戏的打包和针对不同平台的发布策略。本文旨在为C++游戏开发者提供一个实用的开发指南,帮助他们从零开始构建出性能优化、跨平台兼容的游戏。 # 关键字 C++编程;
recommend-type

使用scikit-learn训练模型来预测鸢尾花种类

<think>我们使用scikit-learn库来训练一个分类模型预测鸢尾花种类。鸢尾花数据集是scikit-learn内置的经典数据集,包含三种鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和对应的类别标签。步骤:1.导入必要的库和数据集2.数据探索(可选,但建议了解数据)3.数据预处理(如划分训练集和测试集、标准化等)4.选择模型(例如KNN、随机森林等)5.训练模型6.模型评估7.使用模型进行预测下面以KNN(K近邻)算法为例,展示完整流程。</think>### 使用 scikit-learn 训练鸢尾花分类模型 以下是基于 scikit-learn 训练鸢尾花分类模型的
recommend-type

WWF工作流设计器C#源码解析及演示

### WWF工作流设计器控件C#源码知识点 #### 1. WWF(Windows Workflow Foundation)概述 WWF是微软公司推出的一个工作流框架,作为.NET Framework的一部分。它提供了一套丰富的API,用于设计、执行和管理工作流。工作流可以用于各种应用程序,包括Web应用、服务和桌面应用,使得开发者能够将复杂的业务逻辑以工作流的形式表现出来,简化业务流程自动化和管理。 #### 2. 工作流设计器控件(Workflow Designer Control) 工作流设计器控件是WWF中的一个组件,主要用于提供可视化设计工作流的能力。它允许用户通过拖放的方式在界面上添加、配置和连接工作流活动,从而构建出复杂的工作流应用。控件的使用大大降低了工作流设计的难度,并使得设计工作流变得直观和用户友好。 #### 3. C#源码分析 在提供的文件描述中提到了两个工程项目,它们均使用C#编写。下面分别对这两个工程进行介绍: - **WorkflowDesignerControl** - 该工程是工作流设计器控件的核心实现。它封装了设计工作流所需的用户界面和逻辑代码。开发者可以在自己的应用程序中嵌入这个控件,为最终用户提供一个设计工作流的界面。 - 重点分析:控件如何加载和显示不同的工作流活动、控件如何响应用户的交互、控件状态的保存和加载机制等。 - **WorkflowDesignerExample** - 这个工程是演示如何使用WorkflowDesignerControl的示例项目。它不仅展示了如何在用户界面中嵌入工作流设计器控件,还展示了如何处理用户的交互事件,比如如何在设计完工作流后进行保存、加载或执行等。 - 重点分析:实例程序如何响应工作流设计师的用户操作、示例程序中可能包含的事件处理逻辑、以及工作流的实例化和运行等。 #### 4. 使用Visual Studio 2008编译 文件描述中提到使用Visual Studio 2008进行编译通过。Visual Studio 2008是微软在2008年发布的集成开发环境,它支持.NET Framework 3.5,而WWF正是作为.NET 3.5的一部分。开发者需要使用Visual Studio 2008(或更新版本)来加载和编译这些代码,确保所有必要的项目引用、依赖和.NET 3.5的特性均得到支持。 #### 5. 关键技术点 - **工作流活动(Workflow Activities)**:WWF中的工作流由一系列的活动组成,每个活动代表了一个可以执行的工作单元。在工作流设计器控件中,需要能够显示和操作这些活动。 - **活动编辑(Activity Editing)**:能够编辑活动的属性是工作流设计器控件的重要功能,这对于构建复杂的工作流逻辑至关重要。 - **状态管理(State Management)**:工作流设计过程中可能涉及保存和加载状态,例如保存当前的工作流设计、加载已保存的工作流设计等。 - **事件处理(Event Handling)**:处理用户交互事件,例如拖放活动到设计面板、双击活动编辑属性等。 #### 6. 文件名称列表解释 - **WorkflowDesignerControl.sln**:解决方案文件,包含了WorkflowDesignerControl和WorkflowDesignerExample两个项目。 - **WorkflowDesignerControl.suo**:Visual Studio解决方案用户选项文件,该文件包含了开发者特有的个性化设置,比如窗口布局、断点位置等。 - **Thumbs.db**:缩略图缓存文件,由Windows自动生成,用于存储文件夹中的图片缩略图,与WWF工作流设计器控件功能无关。 - **WorkflowDesignerExample**:可能是一个文件夹,包含了示例工程相关的所有文件,或者是示例工程的可执行文件。 - **EULA.txt**:最终用户许可协议文本文件,通常说明了软件的版权和使用许可条件。 综上所述,该文件集包含了WWF工作流设计器控件的完整C#源码以及相应的Visual Studio项目文件,开发者可以利用这些资源深入理解WWF工作流设计器控件的工作机制,并将其应用于实际的项目开发中,实现工作流的设计和管理功能。
recommend-type

CAD数据在ANSA中:完美修复几何数据的策略与方法

# 摘要 CAD数据的准确性和几何完整性对于产品设计和工程分析至关重要。本文首先强调了CAD数据和几何修复的重要性,随后介绍了ANSA软件在处理CAD数据中的角色。通过详细的分析,本文探讨了几何数据的常见问题,以及有效的手动和自动修复技术。文中还提供了几何修复在实际应用中的案例分析,并讨论了行业未来对几何修复技术的需求和新兴技术趋势。文章旨在为CAD数据几何修复提供全面的理论知识、诊断方法和修复策略,并