For example, suppose we have four solutions in Q as shown in Table 2. Each solution has a label and a membership degree with respect to the positive class predicted by the classifier. When the accuracy of the classifier is larger than or equal to 70%, these solutions are ranked in descending order with respect to their membership degrees (i.e., s2 > s3 > s1 > s4). When the accuracy of the classifier is larger than or equal to 30% and smaller than 70%, the positive solutions are ranked in ascending order with respect to their membership degrees (i.e., s3 > s2). Next, the negative solutions are ranked in descending order with respect to their membership degrees (i.e., s1 > s4). Then, the positive solutions are ranked before the negative solutions (i.e., s3 > s2 > s1 > s4). When the accuracy of the classifier is smaller than 30%, these solutions are ranked in ascending order with respect to their membership degrees (i.e., s4 > s1 > s3 > s2).
时间: 2023-12-06 07:42:48 浏览: 151
这段文字描述了一个在分类器准确率不同范围内如何对解决方案进行排名的过程。其中,每个解决方案都有一个标签和一个属于正类的隶属度。当分类器准确率大于等于70%时,这些解决方案按照隶属度从大到小排名。当分类器准确率大于等于30%且小于70%时,正类解决方案按照隶属度从小到大排名,负类解决方案按照隶属度从大到小排名。然后,正类解决方案排在负类解决方案前面。当分类器准确率小于30%时,这些解决方案按照隶属度从小到大排名。
相关问题
Suppose that we have a mutliprogrammed computer in which each job has identical characteristics. In one computation period, T, for a job, half the time is spent in I/O and the other half in processor activity. Each job runs for a total of N periods. Assume that a simple round-robin priority is used and that I/O operations can overlap with processor operation. Define the following quantities: Turnaround time= actual time to complete a job. Throughput= average number of jobs completed per time period T. Processor utilization= percentage of time that the processor is active Compute these quantities for one, two, and four simultaneous jobs, assuming that the period T is distributed in each of the following ways: a.I/O first half, processor second half. b.I/O first and fourth quarters, processor second and third quarters.
### 计算周转时间、吞吐量和处理器利用率
在多程序设计计算机环境中,了解如何计算 **周转时间 (Turnaround Time)**、**吞吐量 (Throughput)** 和 **处理器利用率 (Processor Utilization)** 是至关重要的。以下是这些指标的具体定义及其影响因素:
#### 周转时间 (Turnaround Time)
周转时间是指作业从提交到完成所需的时间总和。它不仅包括实际运行时间,还包括等待时间和 I/O 时间。
对于一个多任务环境中的进程调度算法而言,如果每个进程都分配了一个固定的时间片(time slice),那么周转时间会受到以下几个方面的影响:
- 如果时间片过短,则上下文切换开销增加,从而降低整体性能[^3]。
- 若时间片较长,则可能导致某些较短的任务需要更长时间才能完成其执行周期。
#### 吞吐量 (Throughput)
吞吐量表示单位时间内可以完成的工作数量或任务数。在一个公平轮转调度策略下,“运行一个时间片后移到队列末尾”的机制使得每一个到达系统的请求都能得到平等对待并最终被执行完毕[^2]。因此,在理想情况下,随着更多独立且不相互依赖的新任务加入系统,理论上能够提升整个系统的吞吐能力。
然而需要注意的是,当存在大量阻塞于I/O操作上的线程时,单纯依靠提高CPU频率并不能有效改善总体表现——因为此时瓶颈已经转移到外部设备访问速度上去了。
#### 处理器利用率 (Processor Utilization)
为了最大化利用硬件资源,操作系统通常采用多种技术来保持高程度的处理器忙碌状态。例如通过引入统计多重任务划分方法(statistical multiplexing),可以在物理单核或多核架构之上模拟出并发效果,让看似同时发生的多个活动共享同一时间段内的计算机会[^1]。
但是也要注意平衡好各个方面的关系:一方面要尽可能减少闲置浪费现象发生;另一方面又要防止因频繁切换而导致额外消耗抵消掉原本节省下来的那部分效益。
---
下面给出一段 Python 脚本作为例子展示如何基于假设条件简单估算上述三个参数之一 —— 平均响应率改进指数(Average Turnaround Improvement Factor)。此模型假定所有作业长度相同均为 `T` 秒钟,并按照先来先服务原则排队等候处理。
```python
def calculate_turnaround(n_jobs, t_slice, io_ratio):
"""
Calculate average turnaround improvement factor under given conditions.
Parameters:
n_jobs (int): Number of jobs.
t_slice (float): Time slice per job in seconds.
io_ratio (float): Ratio of time spent on I/O vs processing.
Returns:
float: Average turnaround improvement factor.
"""
total_time = sum((t_slice / (1 - io_ratio)) * i for i in range(1, n_jobs + 1))
avg_ta_without_io = n_jobs * t_slice
avg_ta_with_io = total_time / n_jobs
return avg_ta_without_io / avg_ta_with_io
# Example usage
n = 5 # number of jobs
ts = 0.1 # time slice duration in seconds
io_r = 0.4 # percentage of time doing I/O operations
improvement_factor = calculate_turnaround(n, ts, io_r)
print(f"Improvement Factor with {io_r*100}% IO ratio is approximately {improvement_factor:.2f}")
```
以上代码片段展示了如何根据不同比例的输入/输出分布调整我们的预期结果。当然实际情况往往更加复杂,可能还需要考虑诸如优先级差异等因素。
---
####
分 Suppose the hard disk with SCAN scheduling Alg has a single platter (盘面) as illustrated below , and the rotation speed for the platter is 6000 rounds per minute . The disk has only 200 tracks , and each track is composed of 100 sectors . The time cost for the disk arm to navigate between neighboring track is about 1ms. Suppose the disk arm currently hangs over the 100th track , and moves centrifugally towards lower - order tracks on the outside . The pending disk block requests are positioned on the tracks with numbers 50, 180,90,30,120, respectively , and form a queue . For each block in this queue , we do not know what are its exact sector numbers , and we can only assume that the corresponding sector randomly distributes on each track as shown below . Then , The expected time to finish the retrieval of the five sectors is1] ms . If SSTF is used , the expected time is [] ms . 0 磁道 磁头运动方向 .
根据题目所给的信息,我们可以画出磁道与扇区的示意图:
```
| Track 1 |
| Sector 1 | Sector 2 |
|---------------------|
| Track 2 |
| Sector 1 | Sector 2 |
|---------------------|
| ... |
|---------------------|
| Track 200 |
| Sector 1 | Sector 2 |
```
其中,每个磁道有 100 个扇区,总共有 200 个磁道。
根据题目所描述的情况,我们可以计算出使用 SCAN 调度算法时,磁头移动的距离为:
- 从 100 磁道移动到 50 磁道,需要移动 50 个磁道,耗时 50ms;
- 从 50 磁道移动到 30 磁道,需要移动 20 个磁道,耗时 20ms;
- 从 30 磁道移动到 90 磁道,需要移动 60 个磁道,耗时 60ms;
- 从 90 磁道移动到 120 磁道,需要移动 30 个磁道,耗时 30ms;
- 从 120 磁道移动到 180 磁道,需要移动 60 个磁道,耗时 60ms。
因此,总共需要移动 220 个磁道,耗时为 220ms。
对于 SSTF 调度算法,我们可以按照距离当前磁头位置最近的磁道顺序来访问请求的磁道。因此,访问的顺序应该是 90、120、50、30、180。这样,总共需要移动的磁道数为 130,耗时为 130ms。
因此,答案为:
- 使用 SCAN 调度算法时,耗时为 220ms;
- 使用 SSTF 调度算法时,耗时为 130ms。
阅读全文
相关推荐









