yolov12引入shuffle Attention注意力模块
时间: 2025-07-21 15:37:16 浏览: 15
### 集成 Shuffle Attention 到 YOLOv12
为了在 YOLOv12 中集成 Shuffle Attention(SA),可以从其核心功能出发,即通过分组操作和 shuffle 单元来整合通道注意力和空间注意力。以下是具体的实现方法及其可能带来的优化效果。
#### 实现方法
1. **模块结构设计**
- 将输入特征图按通道维度分成若干子组,每组独立计算通道注意力和空间注意力。
- 借助 shuffle 操作重新排列这些子组中的特征分布,从而促进跨通道的信息交互[^2]。
2. **代码实现**
下面是一个 Python 实现的 SA 模块示例:
```python
import torch
import torch.nn as nn
class ChannelAttention(nn.Module):
def __init__(self, channels, reduction=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction, bias=False),
nn.ReLU(),
nn.Linear(channels // reduction, channels, bias=False)
)
def forward(self, x):
b, c, _, _ = x.size()
avg_out = self.fc(self.avg_pool(x).view(b, c)).view(b, c, 1, 1)
max_out = self.fc(self.max_pool(x).view(b, c)).view(b, c, 1, 1)
out = torch.sigmoid(avg_out + max_out)
return out * x
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(1)
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
scale = torch.cat([avg_out, max_out], dim=1)
scale = self.conv(scale)
scale = self.bn(scale)
scale = torch.sigmoid(scale)
return x * scale
class ShuffleAttention(nn.Module):
def __init__(self, channel, group=8):
super(ShuffleAttention, self).__init__()
self.group = group
self.channel = channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.cweight = nn.Parameter(torch.zeros(1, channel // (2*group), 1, 1))
self.cbias = nn.Parameter(torch.ones(1, channel // (2*group), 1, 1))
self.sweight = nn.Parameter(torch.zeros(1, channel // (2*group), 1, 1))
self.sbias = nn.Parameter(torch.ones(1, channel // (2*group), 1, 1))
self.gn = nn.GroupNorm(channel // (2 * group), channel // (2 * group))
def forward(self, x):
b, c, h, w = x.shape
x = x.view(b * self.group, -1, h, w)
x_0, x_1 = torch.split(x, [c // (2*self.group), c // (2*self.group)], dim=1)
xn = x_0 * self.avg_pool(x_0) * self.cweight + self.cbias
xs = torch.sigmoid(self.gn(xn))
x = x_1 * xs * self.sweight + self.sbias
x = x.view(b, -1, h, w)
return x
```
3. **嵌入到 YOLOv12 主干网络**
- 可以将 Shuffle Attention 添加至主干网络的关键层中,例如 CSPBlock 或者 EMA 结构之后。
- 修改后的部分代码如下所示:
```python
from yolov12.models.common import Conv
class RepCSPBottleNeckWithSA(Conv):
def __init__(self, ch_in, ch_out, shortcut=True, groups=1, expansion=0.5):
super().__init__(ch_in, ch_out)
hidden_channels = int(expansion * ch_out)
self.cv1 = Conv(ch_in, hidden_channels, k=1, s=1)
self.cv2 = Conv(hidden_channels, ch_out, k=3, s=1, g=groups)
self.sa = ShuffleAttention(ch_out, group=8) # 插入 Shuffle Attention
def forward(self, x):
y = self.cv2(self.cv1(x))
return self.sa(y) if hasattr(self, 'sa') else y
```
4. **训练与调优**
- 调整学习率调度器以及权重衰减参数,确保新引入的注意力机制不会破坏原有模型收敛性。
- 对于数据集较大的情况,适当增加 epoch 数目以便充分挖掘 Shuffle Attention 提供的新特性。
---
#### 改进效果分析
- **性能增益**:由于 Shuffle Attention 同时考虑了通道间依赖关系与局部区域内的上下文信息,它能够显著提高目标检测任务中小物体识别准确度[^2]。
- **计算成本控制**:相比传统全局平均池化加全连接层构成的标准 SENet 注意力方案,Shuffle Attention 更注重轻量化设计,在不大幅增加额外运算开销前提下提升了整体表现[^1]。
---
阅读全文
相关推荐



















