活动介绍

哈夫曼树,第一行输入一个数n,表示叶结点的个数。\n\n需要用这些叶结点生成哈夫曼树,根据哈夫曼树的概念,这些结点有权值,即weight,题目需要输出哈夫曼树的带权路径长度(wpl)。

时间: 2023-05-31 21:18:39 浏览: 404
### 回答1: 哈夫曼树是一种特殊的二叉树,用于编码和压缩数据。输入一个数n表示叶结点的个数,根据这些叶结点生成哈夫曼树,每个结点都有一个权值weight,题目需要输出哈夫曼树的带权路径长度(wpl),即所有叶结点的权值乘以其到根结点的路径长度之和。 ### 回答2: 哈夫曼树是一种带权路径长度最小的树,常用于数据压缩等领域。其构建过程是将给定的叶结点按权值大小从小到大排序,然后不断取出权值最小的两个结点作为左右子结点构建一棵新树,新树的权值为左右子结点权值之和,直至只剩下一棵树为止。 在本题中,输入一个数n表示叶结点的个数,我们需要根据这些叶结点的权值生成哈夫曼树,并计算出哈夫曼树的带权路径长度(wpl)。带权路径长度是指每个叶结点的权值乘以路径长度(到根节点的距离)之和,即: wpl = ∑(weight[i] * depth[i]) 其中,weight[i]表示第i个叶结点的权值,depth[i]表示第i个叶结点到根节点的路径长度。因此,我们需要在生成哈夫曼树的过程中,记录每个叶结点的深度(即路径长度),然后根据公式计算出wpl。 具体实现上,可以使用一个优先队列(也称堆)来维护所有结点(包括叶结点和中间结点)的权值。每次从队列中取出两个权值最小的结点作为左右子结点构建一棵新树,并将新树的权值加入队列中。同时,在构建新树的过程中,记录每个叶结点的深度,并累加每个叶结点的权值乘以深度,最终得到wpl。 代码实现如下(使用C++语言): #include <iostream> #include <queue> using namespace std; struct Node { int weight; // 权值 int depth; // 深度 Node* left; // 左子结点 Node* right; // 右子结点 Node(int w, int d) : weight(w), depth(d), left(nullptr), right(nullptr) {} }; struct cmp { bool operator ()(Node* n1, Node* n2) { return n1->weight > n2->weight; } }; int main() { int n; cin >> n; priority_queue<Node*, vector<Node*>, cmp> q; for (int i = 0; i < n; i++) { int w; cin >> w; q.push(new Node(w, 0)); // 叶结点深度为0 } Node* root = nullptr; while (q.size() >= 2) { Node* left = q.top(); q.pop(); Node* right = q.top(); q.pop(); Node* parent = new Node(left->weight + right->weight, max(left->depth, right->depth) + 1); // 父结点权值为左右子结点权值之和,深度为左右子结点深度最大值+1 parent->left = left; parent->right = right; q.push(parent); if (q.size() == 1) { // 最后一次取出的结点即为根节点 root = q.top(); } } int wpl = 0; queue<Node*> bfs; // 广度优先遍历 bfs.push(root); while (!bfs.empty()) { Node* cur = bfs.front(); bfs.pop(); if (cur->left == nullptr && cur->right == nullptr) { // 叶结点 wpl += cur->weight * cur->depth; // 累加带权路径长度 } if (cur->left != nullptr) { bfs.push(cur->left); } if (cur->right != nullptr) { bfs.push(cur->right); } } cout << wpl << endl; return 0; } ### 回答3: 哈夫曼树是一种重要的树形数据结构,也被称为最优二叉树。它的主要应用在数据压缩、编码和加密等领域。 在哈夫曼树中,叶子结点的权值代表着字符出现的频率或是信号出现的概率。通常情况下,字符出现的频率越高,则对应叶子结点的权值越大。而构建哈夫曼树的目标就是通过合并权值最小的点,最终形成一棵根节点为所有叶节点的最优二叉树。 在进行哈夫曼编码时,每个叶子结点都被标记上一个唯一的字符,它们的编码是由根节点开始到对应叶子节点的路径上所有左分支标记为0,右分支标记为1连接而成。经过哈夫曼编码后,字符出现的频率高的会被分配到较短的编码,从而达到数据压缩的目的。 对于构建出的哈夫曼树,题目中要求输出带权路径长度(wpl),即所有叶子结点的权值乘以它们与根节点的距离之和。可以通过递归或广度优先搜索等方法遍历哈夫曼树,计算出每个叶子结点的权值和深度,最后累加得出wpl值。
阅读全文

相关推荐

任务描述 本关任务:根据输入字符集合及各字符权值进行哈夫曼编码,编写一个程序实现。 相关知识 为了完成本关任务,你需要掌握: 假设每种字符在电文中出现的次数为wi,其编码长度为li,电文中有n种字符,则电文总长度应为w1l1+w2l2+…+ wnln= 。对应到二叉树上,n可以看作是二叉树中叶子结点的个数,wi可以看作是叶子结点的权值,li恰为从根结点到叶子结点Ki的路径长度,显然,设计电文总长度最短的二进制前缀编码即是构造以字符出现频率作为权值的具有n个叶子结点的哈夫曼树,由此所得到的二进制前缀编码称为哈夫曼编码(Huffman Code) 由于哈夫曼树中没有度为1的结点(这种树又称为严格的二叉树),则一棵有n个叶子结点哈夫曼树共有2n-1个结点,可以存储在一个大小为2n-1的一维数组中,构成静态链表来存放哈夫曼树中的结点。如图所示的静态链表。其中data为数据域,lchild为左孩子指针域,rchild为右孩子指针域,parent为双亲指针域,‘0’表示空指针。 哈夫曼树的构造算法: (1)初始化哈夫曼树的2n-1个结点的一维数组,即将各结点中的各个域均置0; (2)读入n个权值存放到一维数组的前n个单元中,它们即为初始森林中的n个只含根结点的权值; (3)对森林中的二叉树进行合并,产生n-1个新结点,依次存放到一维数组的第n+1个开始的单元中,在这个过程中要注意对每个结点双亲域、左右孩子域以及权值的修改。 编程要求 根据提示,在右侧编辑器补充代码,计算并输出已输入字符的哈夫曼编码字符串。 测试说明 平台会对你编写的代码进行测试: 测试输入:第一个数据为输入字符的个数,以后各行前面为待编码字符,后面的为该字符的权值 6 A 12 B 6 C 20 D 16 E 2 F 8 预期输出: number---element---weight---huffman code 1 A 12 00 2 B 6 1110 3 C 20 10 4 D 16 01 5 E 2 1111 6 F 8 110 #include"stdio.h" #include"stdlib.h" #include"string.h" typedef char ElemType; typedef struct { ElemType elem; unsigned int m_weight; unsigned int parent,lchild,rchild; }HTNode,*HuffmanTree; //定义树结点及指向树结点的指针类型 typedef char** HuffmanCode; typedef int Status; typedef struct weight { char elem; unsigned int m_weight; }Weight; // 保存字符信息的结点 void HuffmanCoding(HuffmanTree *,HuffmanCode *,Weight *,int);//哈夫曼编码 函数 void Select(HuffmanTree,int,int *,int *); //在哈夫曼树中找权值最小的两个结点 void OutputHuffmanCode(HuffmanTree,HuffmanCode,int);//输出哈夫曼编码 Status main(void) { HuffmanTree HT; //树结点指针 HuffmanCode HC; //定义字符变量二级指针 Weight *w; // char c; // 字符变量the symbolizes; int i,n; // 元素个数 int wei; // 元素权值 printf("请输入哈夫曼树的待编码字符总数:\n" ); //输入哈夫曼树的待编码字符总数 scanf("%d",&n); w=(Weight *)malloc(n*sizeof(Weight)); //申请结点存储n个字符的信息 /*将n个结点中存入字符及其权值*/ for(i=0;i<n;i++) { printf("请输入字符及其权值:\n"); scanf("%1s%d",&c,&wei); w[i].elem=c; w[i].m_weight=wei; } HuffmanCoding(&HT,&HC,w,n);//进行编码 OutputHuffmanCode(HT,HC,n); //输出编码 return 1; } // void HuffmanCoding(HuffmanTree *HT,HuffmanCode *HC,Weight *w,int n) { int i,m,s1,s2,start,c,f; char *cd; HuffmanTree p; if(n<=1) return; m=2*n-1; /*申请哈夫曼树2*n个结点空间,哈夫曼树以顺序方式存储*/ (*HT)=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); /****************Begin1********************/ //初始化哈夫曼树前n个结点的权值及3个指针变量值 for(i=1;i<=n;++i) { } //初始化哈夫曼树后n-1个结点的权值及3个指针变量值 for(;i<=m;++i) { } //构造哈夫曼树 for(i=n+1;i<=m;++i)//哈夫曼树的后n-1个结点用来存储从前n个结点中找到的两个权值最小且没有链接的结点,双向标识各自指针域确定其链接关系 { } /****************End1********************/ (*HC)=(HuffmanCode)malloc(n*sizeof(char*));//申请n个字符指针空间用于指向编码得到的字符串 cd=(char *)malloc(n*sizeof(char)); //申请有n个字符空间的字符数组用于临时存储编码得到字符串 cd[n-1]='\0';//字符数组的补结束符 /****************Begin2********************/ for(i=1;i<=n;++i)//对n个字符进行编码 { } /****************End2********************/ } void Select(HuffmanTree HT,int n,int *s1,int *s2) { /****************Begin3********************/ /****************End3********************/ } void OutputHuffmanCode(HuffmanTree HT,HuffmanCode HC,int n) { int i; printf("\nnumber---element---weight---huffman code\n"); for(i=1;i<=n;i++) printf(" %d %c %d %s\n",i,HT[i].elem,HT[i].m_weight,HC[i]); }

静态链表示意图:2.2 顺序表与链表的比较存储密度比较:顺序表:只存储数据元素、预分配存储空间链表:指针的结构性开销、链表中的元素个数没有限制按位查找:顺序表:O(1),随机存取链表:O(n),顺序存取插入和删除:顺序表:O(n),平均移动表长一半的元素链表:不用移动元素,合适位置的指针——O(1)时间复杂度:顺序表:若线性表频繁查找却很少进行插入和删除操作链表:若线性表需频繁插入和删除时空间复杂度:顺序表:知道线性表的大致长度,空间效率会更高链表:若线性表中元素个数变化较大或者未知2.3 栈        定义:限定仅在一端(栈顶)进行插入和删除操作的线性表,后进先出。栈示意图:        时间复杂度(插入与删除):顺序栈与链栈均为O(1)        空间复杂度:链栈多一个指针域,结构性开销较大,使用过程中元素个数变化较大时,用链栈;反之顺序栈。        出栈元素不同排列的个数:   (卡特兰数)        共享栈: 两个栈共享一片内存空间, 两个栈从两边往中间增长。卡特兰数的应用:存储结构:顺序栈初始化:top=-1链栈初始化:top=NULL栈的应用:        1) 括号匹配        2) 递归        3) 中缀表达式 转 后缀表达式        4) 中缀表达式:设两个栈(数据栈和运算符栈),根据运算符栈的优先级进行运算。2.4 队列        定义: 只允许在一端插入, 在另一端删除。具有先进先出的特点。队列示意图:        时间复杂度:均为O(1)        空间复杂度:链队列多一个指针域,结构性开销较大;循环队列存在浪费空间和溢出问题。使用过程中元素个数变化较大时,用链队列;反之循环队列。        双端队列: 只允许从两端插入、两端删除的线性表。双端队列示意图: 存储结构:        链队列:队头指针指向队头元素的前一个位置,队尾指针指向队尾元素,先进先出。        循环队列:                1)队空:front=rear                2)队满:(rear+1)%QueueSize=front                3)队列元素个数:(队尾-队头+队长)%队长==(rear-front+QueueSize)%QueueSize队列的应用:        1) 树的层次遍历        2) 图的广度优先遍历2.4 数组与特殊矩阵一维数组的存储结构:二维数组的存储结构: 对称矩阵的压缩(行优先):下三角矩阵的压缩(行优先):  上三角(行优先):三对角矩阵的压缩(行优先):稀疏矩阵压缩:十字链表法压缩稀疏矩阵:2.5 串        串,即字符串(String)是由零个或多个字符组成的有限序列。串是一种特殊的线性表,数据元素之间呈线性关系。字符串模式匹配:        1)朴素模式匹配算法        2)KMP算法手算KMP的next数组示意图:求next[2] :求next[3]: 求next[4]: 求next[5]: C语言求KMP的next数组代码示例:void Createnext(char *sub, int *next){ assert(sub != NULL && next != NULL); int j = 2; //模式串的next指针 int k = 0; //next数组的回溯值,初始化为next[1]=0 int lenSub = strlen(sub); assert(lenSub != 0); next[0] = -1; next[1] = 0; while (j < lenSub){ if (sub[j-1] == sub[k]){ next[j] = ++k; j++; } else{ k = next[k]; if (k == -1){ k = 0; next[j] = k; j++; } } }}求nextValue:void nextValue(char *sub, int *next) { int lenSub = strlen(sub); for(int j=2;j<lensub; j++){ if(sub[j]==sub[next[j]]) next[j]=next[next[j]] }}备注:         1) 实现next有多种不同方式, 对应不同的next数组使用        2) 根据实现方式不同, next数组整体+1不影响KMP算法。第三章 树和二叉树3.1 树和森林        定义(树):n(n≥0)个结点(数据元素)的有限集合,当 n=0 时,称为空树。3.1.1 树的基本术语        结点的度:结点所拥有的子树的个数。        叶子结点:度为 0 的结点,也称为终端结点。        分支结点:度不为 0 的结点,也称为非终端结点。        孩子:树中某结点子树的根结点称为这个结点的孩子结点。        双亲:这个结点称为它孩子结点的双亲结点。        兄弟:具有同一个双亲的孩子结点互称为兄弟。        路径:结点序列 n1, n2, …, nk 称为一条由 n1 至 nk 的路径,当且仅当满足结点 ni 是 ni+1 的双亲(1<=i<k)的关系。        路径长度:路径上经过的边的个数。        祖先、子孙:如果有一条路径从结点 x 到结点 y,则 x 称为 y 的祖先,而 y 称为 x 的子孙。        结点所在层数:根结点的层数为 1;对其余结点,若某结点在第 k 层,则其孩子结点在第 k+1 层。        树的深度(高度):树中所有结点的最大层数。        树的宽度:树中每一层结点个数的最大值。        树的度:树中各结点度的最大值。        树的路径长度:  从根到每个结点的路径长度总和        备注: 在线性结构中,逻辑关系表现为前驱——后继,一对一; 在树结构中,逻辑关系表现为双亲——孩子,一对多。        森林: 森林是m(m≥0)棵互不相交的树的集合, m可为0, 即空森林。3.1.2 树的性质        结点数=总度数+1        度为m的树第 i 层至多有 个结点(i≥1)        高度为h的m叉树至多有 个结点        具有n个结点的m叉树的最小高度为 最小高度推理过程图:3.1.3 树与森林的遍历树的遍历:先根遍历(先根后子树)后根遍历(先子树后根)层序遍历森林的遍历:前序遍历(先根, 后子树)中序遍历(先子树后根, 其实就是后序遍历树)区别与联系:         1) 树的前序遍历等价于其树转化二叉树的前序遍历!        2) 树的后序遍历等价于其树转化二叉树的中序遍历!3.1.4 树的存储结构双亲表示法图:孩子表示法图:孩子兄弟表示法图(树/森林转化为二叉树):3.1.5 树转二叉树在树转为二叉树后, 有以下结论:        1) 树的叶子结点数量 = 二叉树左空指针数量(形象理解为树越宽, 兄弟越多, 越是向右长)        2) 树的非叶子结点数量 = 二叉树右空指针-1(非叶子必有儿子, 右指针由儿子提供, -1是根节点多了一个右空指针)3.2 二叉树3.2.1 二叉树的性质斜树:左斜树:所有结点都只有左子树的二叉树右斜树:所有结点都只有右子树的二叉树        满二叉树:所有分支结点都存在左子树和右子树,且所有叶子都在同一层上的二叉树        完全二叉树:在满二叉树中,从最后一个结点开始,连续去掉任意个结点得到的二叉树完全二叉树特点:叶子结点只能出现在最下两层且最下层的叶子结点都集中在二叉树的左面完全二叉树中如果有度为 1 的结点,只可能有一个,且该结点只有左孩子深度为 k 的完全二叉树在 k-1 层上一定是满二叉树在同样结点个数的二叉树中,完全二叉树的深度最小        性质:在二叉树中,如果叶子结点数为 n0,度为 2 的结点数为 n2,则有: n0=n2+1证明: 设 n 为二叉树的结点总数,n1 为二叉树中度为 1 的结点数,则有: n=n0+n1+n2        在二叉树中,除了根结点外,其余结点都有唯一的一个分枝进入,一个度为 1 的结点射出一个分枝,一个度为 2 的结点射出两个分枝,所以有:n=n1+2n2+1        性质:二叉树的第 i 层上最多有个结点(i≥1)        性质:一棵深度为 k 的二叉树中,最多有 个结点        性质:具有 n 个结点的完全二叉树的深度为 向下取整+1 (或向上取整)证明:设具有 n 个结点的完全二叉树的深度为 k,则:≤n  <对不等式取对数,有:k-1 ≤ <k即:<k ≤ +1由于 k 是整数,故必有k= +1         性质:对一棵具有 n 个结点的完全二叉树中从 1 开始按层序编号,对于任意的序号为 i(1≤i≤n)的结点(简称结点 i),有:如果 i>1,则结点 i 的双亲结点的序号为 i/2,否则结点 i 无双亲结点如果 2i≤n,则结点 i 的左孩子的序号为 2i,否则结点 i 无左孩子如果 2i+1≤n,则结点 i 的右孩子的序号为2i+1,否则结点 i 无右孩子        性质:若已知一棵二叉树的前序序列和中序序列,或者中序序列和后序序列,能唯一确定一颗二叉树。 3.2.2 二叉树的遍历        从根结点出发,按照某种次序访问树中所有结点,并且每个结点仅被访问一次。前序遍历(深度优先遍历)中序遍历后序遍历层序遍历(广度优先遍历)3.2.3 二叉树的存储链式存储图:顺序存储图:3.2.4 线索二叉树        利用二叉树中n+1个空指针, 将指针指向结点的前驱和后继。线索二叉树是加上线索的链表结构,  是一种物理结构存储结构:示例图:三种线索化的对比图: 各自特点:3.3 哈夫曼树和哈夫曼编码        带权路径长度(WPL):从根结点到各个叶子结点的路径长度与相应叶子结点权值的乘积之和        最优二叉树(哈夫曼树):给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树特点:权值越大的叶子结点越靠近根结点只有度为 0 和度为 2 的结点,不存在度为 1 的结点构造过程中共新建了n-1个结点, 因此总结点数为2n-1        前缀编码:在一组编码中,任一编码都不是其它任何编码的前缀, 前缀编码保证了在解码时不会有多种可能。         度为m的哈夫曼树: 通过只有度为m和度为0求解非叶子结点 3.4 并查集        存储结构: 双亲表示法        实现功能: 并查(并两个集合, 查根结点)        优化: 小树并到大树, "高树变矮树"(压缩路径)第四章 图        定义:顶点集V和边集E组成,记为G = (V, E)        注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集, 边集E可以为空        子图:若图G=(V, E),G'=(V', E'),如果V' 属于 V 且E' 属于E,则称图G'是G的子图4.1 图的基本概念图的分类:        无向边:表示为(vi,vj),顶点vi和vj之间的边没有方向        有向边(弧):表示为<vi,vj>,从vi 到vj 的边有方向, vi为弧尾, vj为弧头        稠密图:边数很多的图        稀疏图:边数很少的图        无向完全图:无向图中,任意两个顶点之间都存在边        有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧度、入度和出度:        顶点的度:在无向图中,顶点 v 的度是指依附于该顶点的边数,通常记为TD (v)        顶点的入度:在有向图中,顶点 v 的入度是指以该顶点为弧头的弧的数目,记为ID (v);        顶点的出度:在有向图中,顶点 v 的出度是指以该顶点为弧尾的弧的数目,记为OD (v);        握手定理: 路径:         回路(环):第一个顶点和最后一个顶点相同的路径        简单路径:序列中顶点不重复出现的路径        简单回路(简单环):除第一个和最后一个顶点外,其余顶点不重复出现的回路。        路径长度:非带权图——路径上边的个数        路径长度:带权图——路径上边的权值之和         极大连通子图: 连通的情况下, 包含尽可能多的边和顶点, 也称连通分量        极小连通子图: 删除该子图中任何一条b边, 子图不再连通, 如生成树无向连通图:        连通顶点:在无向图中,如果顶点vi和顶点vj(i≠j)之间有路径,则称顶点vi和vj是连通的        连通图:在无向图中,如果任意两个顶点都是连通的,则称该无向图是连通图        连通分量:非连通图的极大连通子图、连通分量是对无向图的一种划分连通分量示意图:有向强连通图、强连通分量:        强连通顶点:在有向图中,如果从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称顶点vi和vj是强连通的        强连通图:在有向图中,如果任意两个顶点都是强连通的,则称该有向图是强连通图        强连通分量:非强连通图的极大连通子图强连通分量示意图: 子图与生成子图:常考点无向图:        所有顶点的度之和=2|E|        若G是连通图,则最少有 n-1 条边(树),若 |E|>n-1,则一定有回路        若G是非连通图,则最多可能有 条边 (n-1个完全图+1个孤点)        无向完全图共有条边有向图:        所有顶点的出度之和=入度之和=|E|        所有顶点的度之和=2|E|        若G是强连通图,则最少有 n 条边(形成回路)        有向完全图共有条边图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点仅被访问一次。深度优先遍历序列(dfs)广度优先遍历序列(bfs)    备注:  调⽤BFS/DFS函数的次数 = 连通分量数4.2 图的存储结构 邻接矩阵:一维数组:存储图中顶点的信息二维数组(邻接矩阵):存储图中各顶点之间的邻接关系特点:一个图能唯一确定一个邻接矩阵,存储稀疏图时,浪费空间。空间复杂度为: O()。示意图:性质 (行*列) :邻接表:顶点表:所有边表的头指针和存储顶点信息的一维数组边表(邻接表):顶点 v 的所有邻接点链成的单链表示意图:特点:空间复杂度为:O(n+e), 适合存储稀疏图。两者区别:十字链表法图:备注:         1) 十字链表只用于存储有向图        2) 顺着绿色线路找: 找到指定顶点的所有出边        3) 顺着橙色线路找: 找到指定顶点的所有入边        4) 空间复杂度:O(|V|+|E|)邻接多重表图:备注:        1) 邻接多重表只适用于存储无向图        2) 空间复杂度:O(|V|+|E|)四者区别: 4.3 最小生成树        生成树:连通图的生成树是包含全部顶点的一个极小连通子图, 可用DFS和BFS生成。        生成树的代价:在无向连通网中,生成树上各边的权值之和        最小生成树:在无向连通网中,代价最小的生成树        性质: 各边权值互不相等时, 最小生成树是唯一的。边数为顶点数-1生成森林示意图:4.3.1 Prim算法        从某⼀个顶点开始构建⽣成树;每次将代价最⼩的新顶点纳⼊⽣成树,直到所有顶点都纳⼊为⽌。基于贪心算法的策略。        时间复杂度:O(|V|2) 适合⽤于边稠密图。4.3.2 Kruskal 算法(克鲁斯卡尔)        每次选择⼀条权值最⼩的边,使这条边的两头连通(原本已经连通的就不选), 直到所有结点都连通。基于贪心算法的策略。        时间复杂度:O( |E|log2|E| ) 适合⽤于边稀疏图。4.4 最短路径        非带权图: 边数最少的路径(广度优先遍历)        带权图: 边上的权值之和最少的路径4.4.1 Dijkstra算法        时间复杂度:O(n2)        备注: Dijkstra 算法不适⽤于有负权值的带权图4.4.2 Floyd算法核心代码:        时间复杂度:O(n3)        备注: 可以⽤于负权值带权图, 不能解决带有“负权回路”的图三者区别:4.5 有向⽆环图(DAG)描述表达式 (简化前) :描述表达式 (简化后) :4.6 拓扑排序        AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边表示活动Vi必须先于活动Vj进⾏如图:拓扑排序的实现:        ① 从AOV⽹中选择⼀个没有前驱(⼊度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为起点的有向边。        ③ 重复①和②直到当前的AOV⽹为空或当前⽹中不存在⽆前驱的顶点为⽌。逆拓扑排序(可用DFS算法实现):        ① 从AOV⽹中选择⼀个没有后继(出度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为终点的有向边。        ③ 重复①和②直到当前的AOV⽹为空备注: 上三角(对角线为0)矩阵, 必不存在环, 拓扑序列必存在, 但拓扑不唯一。(拓扑唯一, 图不唯一)4.7 关键路径        在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间),称之为⽤边表示活动的⽹络,简称AOE⽹示意图:        关键活动: 从源点到汇点的有向路径可能有多条,所有路径中,具有最⼤路径⻓度的路径称为 关键路径,⽽把关键路径上的活动称为关键活动。        事件vk的最早发⽣时间: 决定了所有从vk开始的活动能够开⼯的最早时间。        活动ai的最早开始时间: 指该活动弧的起点所表⽰的事件的最早发⽣时间。        事件vk的最迟发⽣时间: 它是指在不推迟整个⼯程完成的前提下,该事件最迟必须发⽣的时间。        活动ai的最迟开始时间: 它是指该活动弧的终点所表示事件的最迟发⽣时间与该活动所需时间之差。        活动ai的时间余量:表⽰在不增加完成整个⼯程所需总时间的情况下,活动ai可以拖延的时间。d(k)=0的活动就是关键活动, 由关键活动可得关键路径。示例图:第五章 查找        静态查找 :不涉及插入和删除操作的查找        动态查找 :涉及插入和删除操作的查找        查找⻓度: 在查找运算中,需要对⽐关键字的次数称为查找⻓度        平均查找长度:衡量查找算法的效率公式:5.1 顺序查找(线性查找):        顺序查找适合于存储结构为顺序存储或链接存储的线性表。  基本思想:从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。        时间复杂度: O(n)。有序顺序查找的ASL图:        无序查找失败时的平均查找长度:  n+1次 (带哨兵的情况)5. 2 折半查找:        元素必须是有序的,顺序存储结构。判定树是一颗平衡二叉树, 树高 (由n=-1得来)。        基本思想:用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表。        公式:mid=(low+high)/2, 即mid=low+1/2*(high-low);           1)相等,mid位置的元素即为所求           2)>,low=mid+1;                3)<,high=mid-1。        时间复杂度: 二叉判定树的构造:         备注:对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,不建议使用。失败结点的ASL不是方形结点, 而是其父节点。5.3 分块查找        分块查找,⼜称索引顺序查找。        基本思想:将查找表分为若干子块, 块内的元素可以无序, 块间的元素是有序的, 即前一个快的最大元素小于后一个块的最大元素。再建立索引表, 索引表中的每个元素含有各块的最大关键字和第一个元素的地址。索引表按关键字有序排列。示意图:备注:         1) 设索引查找和块内查找的平均查找⻓度分别为LI、LS,则分块查找的平均查找⻓度为ASL=LI + LS        2) 将长度为n的查找表均匀分为b块, 每块s个记录, 在等概率情况下, 若在块内和索引表中均采用顺序查找, 则平均查找长度为:5.4 二叉排序树        又称二叉查找树(BST,Binary Search Tree), 是具有如下性质的二叉树:左子树结点值 < 根结点值 < 右子树结点值        二叉排序树的插入:  新插入的结点 一定是叶子。二叉排序树的删除        1) 情况一, 删除叶结点, 直接删除        2) 情况二, 待删除结点只有一颗子树, 让子树代替待删除结点        3) 情况三, 待删除结点有左, 右子树, 则令待删除的直接前驱(或直接后继(中序遍历))代替待删除结点。示意图: (30为直接前驱, 60为直接后继)平均查找效率: 主要取决于树的高度。时间复杂度: 5.5 平衡二叉树        简称平衡树(AVL树), 树上任一结点的左子树和右子树的 高度之差不超过1。 结点的平衡因子=左子树高-右子树高。平衡二叉树的插: LL型:RR型:RL型:LR型:        平衡二叉树的删除: 同上考点:        假设以表示深度为h的平衡树中含有的最少结点数。 则有 = 0, = 1, = 2,并且有=  +          时间复杂度: 5.6 红黑树        与AVL树相比, 插入/删除 很多时候不会破坏“红黑”特性,无需频繁调整树的形态。因为AVL是高度差严格要求不超过1, 红黑树高度差不超过2倍, 较为宽泛。定义:        ①每个结点或是红色,或是黑色的        ②根节点是黑色的        ③叶结点(外部结点、NULL结点、失败结点)均是黑色的        ④不存在两个相邻的红结点(即红结点的父节点和孩子结点均是黑色)        ⑤对每个结点,从该节点到任一叶结点的简单路径上,所含黑结点的数目相同        口诀: 左根右,根叶黑 不红红,黑路同示例图:性质:        性质1:从根节点到叶结点的最长路径不大于最短路径的2倍 (红结点只能穿插 在各个黑结点中间)        性质2:有n个内部节点的红黑树高度          结论: 若根节点黑高为h,内部结点数(关键字)最多有 , 最少有示例图:红黑树的插入操作:红黑树的插入示例图:         红黑树的删除: 和“二叉排序树的删除”一样! 具体还是算了吧, 放过自己。。。        时间复杂度: 5.7 B树        B树,⼜称多路平衡查找树,B树中所被允许的孩⼦个数的最⼤值称为B树的阶,通常⽤m表示。 m阶B树的特性:        1)树中每个结点⾄多有m棵⼦树,即⾄多含有m-1个关键字。        2)若根结点不是终端结点,则⾄少有两棵⼦树。        3)除根结点外的所有⾮叶结点⾄少有 棵⼦树,即⾄少含有个关键字。         4) 所有的叶结点都出现在同⼀层次上,并且不带信息, ( 指向这些结点的指针为空 ) 。        5) 最小高度:    (n为关键字, 注意区分结点)        6) 最大高度:         7) 所有⼦树⾼度要相同        8) 叶结点对应查找失败的情况, 即n个关键字有n+1个叶子结点示例图: B树的插入(5阶为例):B树的删除:        1) 若被删除关键字在终端节点,则直接删除该关键字 (要注意节点关键字个数是否低于下限 ⌈m/2⌉ − 1)        2) 若被删除关键字在⾮终端节点,则⽤直接前驱或直接后继来替代被删除的关键字 删除77:删除38:删除90:        3) 若被删除关键字所在结点删除前的关键字个数低于下限,且此时与该结点相邻的左、右兄弟结 点的关键字个数均=⌈m/2⌉ − 1,则将关键字删除后与左(或右)兄弟结点及双亲结点中的关键字进⾏合并 删除49: 5.8 B+树⼀棵m阶的B+树需满⾜下列条件        1)每个分⽀结点最多有m棵⼦树(孩⼦结点)。        2)⾮叶根结点⾄少有两棵⼦树,其他每个分⽀结点⾄少有 ⌈m/2⌉ 棵⼦树。        3)结点的⼦树个数与关键字个数相等。        4)所有叶结点包含全部关键字及指向相应记录的指针,叶结点中将关键字按⼤⼩顺序排列,并且相邻叶结点按⼤⼩顺序相互链接起来        5)所有分⽀结点中仅包含它的各个⼦结点中关键字的最⼤值及指向其⼦结点的指针。所有⾮叶结点仅起索引作⽤,        6) 所有⼦树⾼度要相同B+树示例图:B+树与B树的对比图:5.9 哈希表(Hash)        根据数据元素的关键字 计算出它在散列表中的存储地址。        哈希函数: 建⽴了“关键字”→“存储地址”的映射关系。        冲突(碰撞):在散列表中插⼊⼀个数据元素时,需要根据关键字的值确定其存储地址,若 该地址已经存储了其他元素,则称这种情况为“冲突(碰撞)”        同义词:若不同的关键字通过散列函数映射到同⼀个存储地址,则称它们为“同义词”        复杂度分析:对于无冲突的Hash表而言,查找复杂度为O(1) 5.9.1 构造哈希函数        1) 除留余数法 —— H(key) = key % p, 取⼀个不⼤于m但最接近或等于m的质数p        适⽤场景:较为通⽤,只要关键字是整数即可        2) 直接定址法 —— H(key) = key 或 H(key) = a*key + b        适⽤场景:关键字分布基本连续        3) 数字分析法 —— 选取数码分布较为均匀的若⼲位作为散列地        适⽤场景:关键字集合已知,且关键字的某⼏个数码位分布均匀        4) 平⽅取中法(二次探测法)——取关键字的平⽅值的中间⼏位作为散列地址        适⽤场景:关键字的每位取值都不够均匀。5.9.2 处理冲突拉链法示意图:开放定址法:        1) 线性探测法        2) 平⽅探测法        3) 双散列法        4) 伪随机序列法示意图:        删除操作: 采用开放定址法时, 只能逻辑删除。        装填因子: 表中记录数 / 散列表长度 。        备注: 平均查找长度的查找失败包含不放元素的情况。(特殊: 根据散列函数来算: 2010真题)        聚集: 处理冲突的方法选取不当,而导致不同关键字的元素对同一散列地址进行争夺的现象第六章 排序        稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;        内排序 :所有排序操作都在内存中完成;        外排序 :由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。参考博客:超详细十大经典排序算法总结(java代码)c或者cpp的也可以明白_Top_Spirit的博客-CSDN博客6.1 直接插入排序动图演示:         优化: 折半插入排序6.2 希尔排序        又称缩小增量排序, 先将待排序表分割成若⼲形如 L[i, i + d, i + 2d,…, i + kd] 的“特殊”⼦表,对各个⼦表分别进⾏直接插⼊排序。缩⼩增量d,重复上述过程,直到d=1为⽌。建议每次将增量缩⼩⼀半。示例图:6.3 冒泡排序动图演示:6.4 快速排序算法思想:        1) 在待排序表L[1…n]中任取⼀个元素pivot作为枢轴(或基准)        2) 通过⼀趟排序将待排序表划分为独⽴的两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中的所有元素⼩于pivot,L[k+1…n]中的所有元素⼤于等于 pivot,则pivot放在了其最终位置L(k)上,这个过程称为⼀次“划分”。        3) 然后分别递归地对两个⼦表重复上述过程,直每部分内只有⼀个元素或空为⽌,即所有元素放在了其最终位置上。示例图:  6.5 简单选择排序        算法思想: 每⼀趟在待排序元素中选取关键字最⼩的元素加⼊有序⼦序列。动画演示:6.6 堆排序        ⼤根堆: 若满⾜:L(i)≥L(2i)且L(i)≥L(2i+1) (1 ≤ i ≤n/2 )        ⼩根堆: 若满⾜:L(i)≤L(2i)且L(i)≤L(2i+1) (1 ≤ i ≤n/2 )大根堆示例图:6.6.1 建立大根堆        思路:从开始, 把所有⾮终端结点都检查⼀遍,是否满足大根堆的要求,如果不满⾜,则进⾏调整。若元素互换破坏了下⼀级的堆,则采⽤相同的方法继续往下调整(⼩元素不断“下坠”)小元素下坠示例图:          结论: 建堆的过程,关键字对⽐次数不超过4n,建堆时间复杂度=O(n)6.6.2 堆的插入与删除        插入: 将新增元素放到表尾, 而后根据大小根堆进行上升调整。        删除: 被删除的元素⽤堆底元素替代,然后让该 元素不断“下坠”,直到⽆法下坠为⽌排序动图演示:6.7 归并排序        该算法是采用分治法, 把两个或多个已经有序的序列合并成⼀个。2路归并图:        结论:n个元素进⾏k路归并排序,归并趟数= 6.8 基数排序 (低位优先)        基数排序是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;动图演示:         时间复杂度: ⼀趟分配O(n),⼀趟收集O(r),总共 d 趟分配、收集,总的时间复杂度=O(d(n+r)) , 其中把d为关键字拆 为d个部分, r为每个部分可能 取得 r 个值。基数排序适用场景:        ①数据元素的关键字可以⽅便地拆分为 d 组,且 d 较⼩        ②每组关键字的取值范围不⼤,即 r 较⼩        ③数据元素个数 n 较⼤如:内部排序总结:         基本有序:  直接插入(比较最少), 冒泡(趟数最少)6.9 外部排序        数据元素太多,⽆法⼀次全部读⼊内存进⾏排序, 读写磁盘的频率成为衡量外部排序算法的主要因素。示例图:多路归并:        结论: 采⽤多路归并可以减少归并趟数,从⽽减少磁盘I/O(读写)次数。对 r 个初始归并段,做k路归并,则归并树可⽤ k 叉树表示 若树⾼为h,则归并趟数 = h-1 = 。K越大, r越小, 读写磁盘次数越少。(缺点: k越大, 内部排序时间越大)6.9.1 败者树        使⽤k路平衡归并策略,选出⼀个最小元素需要对⽐关键字 (k-1)次,导致内部归并所需时间增加。因此引入败者树。示例图:        结论: 对于 k 路归并,第⼀次构造败者 树需要对⽐关键字 k-1 次 , 有了败者树,选出最⼩元素,只需对⽐关键字次6.9.2 置换-选择排序        使用置换-选择排序可以减少初始化归并段。示意图: 6.9.3 最佳归并树原理图:        注意:对于k叉归并,若初始归并段的数量⽆法构成严格的 k 叉归并树, 则需要补充⼏个⻓度为 0 的“虚段”,再进⾏ k 叉哈夫曼树的构造。示例图: 添加虚段数目: 难点:结束!  !  !注: 以上部分图片素材来自王道数据结构我要的图文并茂关注

最新推荐

recommend-type

C语言实现哈夫曼树的构建

在C语言中实现哈夫曼树的构建,我们可以定义一个结构体来表示哈夫曼树的节点,通常包含权值、左孩子、右孩子的信息。然后实现两个关键函数:findSmallData用于查找权值数组中最小的两个权值的下标;createHuTree用于...
recommend-type

C++实现哈夫曼树简单创建与遍历的方法

接下来,定义一个名为`HufTree`的类,它包含一个`NODE`类型的数组`HufArry`,用于存储哈夫曼树的所有节点,以及一个整型变量`NodeNum`记录当前树中的节点数。`HufTree`类提供了几个成员函数: 1. `SetHuf`函数用于...
recommend-type

Comsol声子晶体能带计算:六角与三角晶格原胞选取及布里渊区高对称点选择 - 声子晶体 v1.0

内容概要:本文详细探讨了利用Comsol进行声子晶体能带计算过程中,六角晶格和三角晶格原胞选取的不同方法及其对简约布里渊区高对称点选择的影响。文中不仅介绍了两种晶格类型的基矢量定义方式,还强调了正确设置周期性边界条件(特别是相位补偿)的重要性,以避免计算误差如鬼带现象。同时,提供了具体的MATLAB代码片段用于演示关键步骤,并分享了一些实践经验,例如如何通过观察能带图中的狄拉克锥特征来验证路径设置的准确性。 适合人群:从事材料科学、物理学研究的专业人士,尤其是那些正在使用或计划使用Comsol软件进行声子晶体模拟的研究人员。 使用场景及目标:帮助研究人员更好地理解和掌握在Comsol环境中针对不同类型晶格进行精确的声子晶体能带计算的方法和技术要点,从而提高仿真精度并减少常见错误的发生。 其他说明:文章中提到的实际案例展示了因晶格类型混淆而导致的问题,提醒使用者注意细节差异,确保模型构建无误。此外,文中提供的代码片段可以直接应用于相关项目中作为参考模板。
recommend-type

springboot213大学生心理健康管理系统的设计与实现.zip

springboot213大学生心理健康管理系统的设计与实现
recommend-type

三轴自动锁螺丝机PLC配方编程:吸钉式锁螺丝智能调整与注释详解 变址寄存器 高效版

一种基于三菱FX系列PLC的三轴自动锁螺丝机的配方编程方法。该系统采用吸钉式锁螺丝方式,通过PLC进行智能管理和调整。主要内容包括:利用D寄存器阵列和变址寄存器Z来存储和管理不同配方的数据,如坐标和螺丝数量;通过触摸屏和示教器简化调试流程,使工人能够快速设置和保存参数;并通过RS指令将数据保存到触摸屏内置存储中。此外,还展示了具体的PLC程序片段,解释了如何通过简单的寄存器操作实现复杂的配方管理和自动化操作。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和机械设备调试的专业人士。 使用场景及目标:适用于需要提高生产效率和简化调试流程的制造业企业。主要目标是帮助技术人员掌握如何使用PLC进行配方管理,优化自动锁螺丝机的操作流程,减少人工干预,提升设备的智能化水平。 其他说明:文中提供的具体PLC程序代码和详细的注释有助于读者更好地理解和应用相关技术。同时,通过实例演示了如何利用PLC寄存器寻址特性和变址寄存器简化程序逻辑,为类似项目提供有价值的参考。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强