mobilenetv2添加CBAM注意力模块
时间: 2023-06-07 07:08:16 浏览: 480
对于您的第一个问题,我很高兴为您提供帮助。MobileNetV2添加CBAM注意力模块是一种常见的技术。CBAM是一种双重注意力机制,有助于提高卷积神经网络的性能,提高图像的质量和准确性。在MobileNetV2中添加CBAM注意力模块可以有效地提高图像分类和目标检测的性能。
相关问题
mobilenetv2添加cbam
### 如何在 MobileNetV2 中集成 CBAM 模块
为了在 MobileNetV2 中集成 CBAM (Convolutional Block Attention Module),可以在每一层卷积操作之后加入 CBAM 来增强模型的空间和通道注意力机制。这有助于提高模型的特征表达能力和性能。
下面是一个具体的实现方式:
#### 1. 定义 CBAM 类
首先定义 `CBAM` 类来封装通道注意力和空间注意力功能[^2]。
```python
import torch
from torch import nn
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=8):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
# Shared MLP layers
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, channel_in, reduction_ratio=8, spatial_kernel=7):
super(CBAM, self).__init__()
self.channel_attention = ChannelAttention(channel_in, reduction_ratio)
self.spatial_attention = SpatialAttention(spatial_kernel)
def forward(self, x):
out = self.channel_attention(x) * x
out = self.spatial_attention(out) * out
return out
```
#### 2. 修改 MobileNetV2 的 InvertedResidual 卷积模块
接着修改 MobileNetV2 的 `InvertedResidual` 层,使其能够应用 CBAM 模块。
```python
def make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
class InvertedResidualWithCBAM(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidualWithCBAM, self).__init__()
self.stride = stride
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
self.cbam = CBAM(oup)
def forward(self, x):
identity = x
output = self.conv(x)
output = self.cbam(output)
if self.use_res_connect:
return identity + output
else:
return output
```
#### 3. 替换原始的 InvertedResidual 模块
最后一步是在构建整个 MobileNetV2 架构时替换掉原有的 `InvertedResidual` 模块为带有 CBAM 的版本。
```python
class MobileNetV2WithCBAM(nn.Module):
def __init__(self, num_classes=1000, width_mult=1.0):
super(MobileNetV2WithCBAM, self).__init__()
block = InvertedResidualWithCBAM
input_channel = 32
last_channel = 1280
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
features = [ConvBNReLU(3, input_channel, stride=2)]
for t, c, n, s in inverted_residual_setting:
output_channel = make_divisible(c * width_mult)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
features.append(ConvBNReLU(input_channel, last_channel, kernel_size=1))
self.features = nn.Sequential(*features)
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(last_channel, num_classes),
)
# Initialize weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
x = x.mean([2, 3]) # Global average pooling
x = self.classifier(x)
return x
```
通过上述代码实现了将 CBAM 集成到 MobileNetV2 中的方法,从而增强了模型对于不同位置以及重要性的感知能力。
mobilenetv2加入cbam
### 如何在 MobileNetV2 中集成 CBAM 模块
为了在 MobileNetV2 中集成 CBAM (Convolutional Block Attention Module),可以在每个卷积层之后引入 CBAM 来增强特征表示。CBAM 同时考虑了通道和空间维度上的注意力机制,这有助于提高模型的表达能力和准确性。
下面是一个具体的实现方案:
#### 导入库并定义 CBAM 组件
```python
import torch
import torch.nn as nn
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, channel_in, reduction_ratio=16, spatial_kernel=7):
super(CBAM, self).__init__()
self.channel_attention = ChannelAttention(channel_in, reduction_ratio)
self.spatial_attention = SpatialAttention(spatial_kernel)
def forward(self, x):
out = self.channel_attention(x) * x
out = self.spatial_attention(out) * out
return out
```
#### 修改 MobileNetV2 的部分结构以加入 CBAM
假设已经有一个预训练好的 `mobilenet_v2` 模型实例,则可以通过继承原有类的方式添加新的组件:
```python
from torchvision.models import mobilenet_v2
class MobilenetV2WithCBAM(mobilenet_v2.MobileNetV2):
def __init__(self, num_classes=1000, **kwargs):
super(MobilenetV2WithCBAM, self).__init__(num_classes=num_classes, **kwargs)
# 遍历所有子模块,找到倒数第二个瓶颈层之前的位置插入CBAM
for name, module in list(self.named_modules()):
if isinstance(module, mobilenet_v2.InvertedResidual):
cbam_layer = CBAM(module.out_channels).cuda()
setattr(getattr(self.features[int(name.split('.')[0])], '_modules'), f'cbam_{name}', cbam_layer)
def forward(self, x):
for idx, layer in enumerate(self.features._modules.values()):
x = layer(x)
if hasattr(layer, "cbam"):
x = getattr(layer, "cbam")(x)
x = self.classifier(x.view(-1, self.last_channel))
return x
```
上述代码展示了如何创建一个新的基于原始 MobileNet V2 架构的新类,并在其内部适当位置插入 CBAM 层[^1]。
阅读全文
相关推荐















