活动介绍

#include <stdio.h>#include <stdlib.h>#include <string.h>unsigned int ReadTemperature(); // 假设有一个函数可以读取温度值int main() { unsigned int temp = 0; unsigned char tempt[15] = ""; // 定义一个足够大的数组来存储转换后的温度值 unsigned char i, j; while (1) { temp = ReadTemperature(); sprintf((char *)tempt, "%.1f", temp); // 将温度值转换成字符类型,并存储到tempt数组中 init_lcd(); write_cmd(0x80); // 设置光标位置为第一行第一列 for (i = 0; i < strlen((char *)tempt); i++) { write_data(tempt[i]); // 逐个将tempt数组中的字符写入lcd屏幕中 } } return 0;}为什么我的值一直是0.0,请帮我修改

时间: 2024-03-05 22:47:59 浏览: 94
根据你提供的代码,我们可以初步判断问题可能出在ReadTemperature()函数上。你需要检查该函数的实现,确保其能够正确地读取温度值。同时,你也可以尝试在主函数中手动赋值给temp变量,查看是否能够正确地将其转换成字符类型并显示在LCD屏幕上。以下是一份示例代码,供你参考: ``` #include <stdio.h> #include <stdlib.h> #include <string.h> unsigned int ReadTemperature() { return 235; // 假设温度值为235 } int main() { unsigned int temp = 0; unsigned char tempt[15] = ""; // 定义一个足够大的数组来存储转换后的温度值 unsigned char i, j; while (1) { // temp = ReadTemperature(); temp = 235; // 手动赋值 sprintf((char *)tempt, "%.1f", (float)temp / 10); // 将温度值转换成字符类型,并存储到tempt数组中 init_lcd(); write_cmd(0x80); // 设置光标位置为第一行第一列 for (i = 0; i < strlen((char *)tempt); i++) { write_data(tempt[i]); // 逐个将tempt数组中的字符写入lcd屏幕中 } } return 0; } ``` 在这份示例代码中,我们手动将temp变量赋值为235,然后将其转换成字符类型并存储到tempt数组中。需要注意的是,我们将temp除以10再转换成字符类型,这是因为你在sprintf()函数中使用了"%.1f"格式化字符串,表示保留1位小数。如果你的温度值是整型,你需要将其除以10,以保证显示的温度值正确。 如果你的程序能够正常运行并显示温度值,那么问题就很可能出在ReadTemperature()函数上,你需要检查其实现。如果还有问题,可以继续提供更多信息,我们一起来排查。
阅读全文

相关推荐

Main主程序 #include "sys.h" #include "delay.h" #include "adc.h" #include "gpio.h" #include "OLED_I2C.h" #include "stmflash.h" #include "ds18b20.h" #include "timer.h" #include "usart1.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <stdbool.h> #define FLASH_SAVE_ADDR ((u32)0x0800F000) //设置FLASH 保存地址(必须为偶数) #define STM32_RX1_BUF Usart1RecBuf #define STM32_Rx1Counter RxCounter #define STM32_RX1BUFF_SIZE USART1_RXBUFF_SIZE extern const unsigned char BMP1[]; extern const unsigned char BMP2[]; char display[16]; //显示缓存区 short temperature=0; //温度 u8 setTempValue = 40; //温度上限 u8 setSmokeValue = 60; //烟雾上限 u8 sendSmsFlag = 0; //发送短信标志 u8 alarmFlag = 0x00; //蜂鸣器报警标志 u16 smoke=0; //烟雾 u8 setn=0; //记录设置按键按下的次数 bool shanshuo=0; bool shuaxin=0; bool fangdao=0; char PhoneNumber[11];//手机号码 char uniPhoneNum[44];//手机号码转码后存放数组 void UsartRx1BufClear(void) { memset(STM32_RX1_BUF, 0, STM32_RX1BUFF_SIZE);//清除缓存 STM32_Rx1Counter = 0; } /***********************************************************************************************/ /****************************** 以下为SIM800相关部分 ****************************************/ /***********************************************************************************************/ void PhoneNumChangeUnicode(char *str1,char *str2) //手机号转码 { u8 i; char *buf = str1; for(i = 0;i < 11;i ++) //发送中文短信手机号必须转码,前面需要加上003 { str2[i*4+0] = '0'; str2[i*4+1] = '0'; str2[i*4+2] = '3'; str2[i*4+3] = buf[i]; } } void gsm_atcmd_send(char *at)//GSM AT指令发送函数 { unsigned short waittry;//延时变量 do { gsm_rev_start = 0;//接收开始标志清零 gsm_rev_okflag = 0;//接收完成标志清零 waittry = 0;//延时变量清零 uart1_send((unsigned char *)at,0xFF);//串口发送内容 while(waittry ++ < 3000)//进入while延时 { if (gsm_rev_okflag == 1)//等待GSM返回OK { return;//返回出去 } delay_ms(1); } } while(gsm_rev_okflag == 0); } void gsm_init(void)//gsm初始化 { gsm_atcmd_send("AT\r\n");//测试用的 delay_ms(1000); gsm_atcmd_send("AT+CSCS=\"UCS2\"\r\n");//设置为unicode编码 delay_ms(1000); gsm_atcmd_send("AT+CMGF=1\r\n");//设置为文本模式 delay_ms(1000); gsm_atcmd_send("AT+CNMI=2,1\r\n");//来短信时提示,并存储到模块内存 delay_ms(1000); gsm_atcmd_send("AT+CMGD=1,4\r\n");//清除短信 delay_ms(1000); gsm_atcmd_send("AT+CSMP=17,0,2,25\r\n");//设置短信保留为5分钟,发送中文 } /* *number 为对方手机号 */ void gsm_send_msg(const char*number,char * content) { u8 len; unsigned char gsm_at_txbuf[60];//GSM AT命令缓存区 memset(gsm_at_txbuf, 0, 60);//缓存清零 strncpy((char *)gsm_at_txbuf,"AT+CMGS=\"",9);//将AT+CMGS=\",复制到gsm_at_txbuf memcpy(gsm_at_txbuf + 9, number, 44);//将手机号码复制到AT+CMGS=\"之后 len = strlen((char *)gsm_at_txbuf);//获取gsm_at_txbuf字符串长度 gsm_at_txbuf[len] = '"'; // AT+CMGS=\"12345678901\" gsm_at_txbuf[len + 1] = '\r'; gsm_at_txbuf[len + 2] = '\n';//gsm_at_txbuf最终的格式"AT+CMGS=\"手机号码\"\r\n" uart1_send(gsm_at_txbuf,0xFF);//发送需要接受短信的手机号码 delay_ms(1000); uart1_send((unsigned char *)content,0xFF); //发短信内容 delay_ms(100); printf("%c",0x1a); //发送结束符号 delay_ms(10); } /* *content 为短信内容 */ void sim800_send_sms(char *content) { bool send_error = 0; u16 send_count = 0; gsm_rev_okflag = 0; OLED_ShowStr(32,2,"Send Sms... ",2,0); PhoneNumChangeUnicode(PhoneNumber,uniPhoneNum); //在发送短信前,先将手机号转码 gsm_send_msg(uniPhoneNum,content);//发送短信 delay_ms(1000);//延时1秒 while(gsm_rev_okflag == 0)//等待返回OK指令 { if(send_count++ > 8000) { send_count = 0; send_error = 1; break; } delay_ms(1); }; gsm_rev_okflag = 0; if(send_error == 1) OLED_ShowStr(32,2,"Send Fail! ",2,0);//显示发送超时 else OLED_ShowStr(32,2," Send OK! ",2,0); UsartRx1BufClear(); delay_ms(1000);//延时1秒 OLED_ShowStr(32,2," ",2,0); } /***********************************************************************************************/ /****************************** end ****************************************/ /***********************************************************************************************/ void STM32_FlashCheck(void) // 检查是否是新的单片机,是的话清空存储区,否则保留 { u8 comper_str[6],i; STMFLASH_Read(FLASH_SAVE_ADDR + 0x10,(u16*)comper_str,5); comper_str[5] = '\0'; if(strstr((char *)comper_str,"FDYDZ") == NULL) //新的单片机 { STMFLASH_Write(FLASH_SAVE_ADDR + 0x10,(u16*)"FDYDZ",5); //写入“FDYDZ”,方便下次校验 delay_ms(50); STMFLASH_Write(FLASH_SAVE_ADDR + 0x40,(u16*)"12345678910",11);//存入初始手机号 delay_ms(50); } STMFLASH_Read(FLASH_SAVE_ADDR + 0x40,(u16*)PhoneNumber,11); //读出手机号 for(i = 0; i < 11 ; i++) { if(PhoneNumber[i]<'0' || PhoneNumber[i]>'9') { break; } } if(i != 11) { memset(PhoneNumber, 0 , 11); //清除缓存 sprintf(PhoneNumber,"12345678910"); } delay_ms(100); } void display_mode(void) { u8 i; //显示中文: 防盗模式 if(fangdao==1){for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+0,1);}else {for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+24,1);} } void displayInitInterface(void) //显示初始页面 { u8 i; for(i = 0;i < 2;i ++)OLED_ShowCN(i*16,4,i+6,0); //显示中文: 温度 for(i = 0;i < 2;i ++)OLED_ShowCN(i*16,6,i+8,0); //显示中文: 烟雾 OLED_ShowChar(32,0,':',2,0); OLED_ShowChar(32,4,':',2,0); OLED_ShowChar(32,6,':',2,0); display_mode(); } void Get_Temperature(void) //获取温度 { temperature=ReadTemperature(); if(temperature>=setTempValue) { if(!(alarmFlag&0x01)) { alarmFlag|=0x01; shanshuo = 0; sendSmsFlag = 2; //发送短信标志 } } else { alarmFlag&=0xFE; } if(temperature>=setTempValue && shanshuo) { OLED_ShowStr(40, 4," ", 2,0); } else { sprintf(display," %d",temperature); OLED_ShowStr(40, 4, (u8*)display, 2,0);//显示温度 OLED_ShowCentigrade(68, 4); //显示摄氏度 } } void Get_Smoke(void) //获取烟雾浓度 { u16 test_adc=0; /* 获取烟雾浓度 */ test_adc = Get_Adc_Average(ADC_Channel_9,10);//读取通道9的10次AD平均值 smoke = test_adc*99/4096;//转换成0-99百分比 if(smoke>=setSmokeValue) { if(!(alarmFlag&0x02)) { alarmFlag|=0x02; shanshuo = 0; sendSmsFlag = 3; //发送短信标志 } } else { alarmFlag&=0xFD; } if(smoke>=setSmokeValue && shanshuo) { OLED_ShowStr(40, 6," ", 2,0); } else { sprintf(display," %02d %%",smoke); OLED_ShowStr(40, 6, (u8*)display, 2,0);//显示温度 } } void displaySetValue(void) //显示设置值 { u8 add=2,i; if(setn==1) { OLED_ShowChar(56,4,setTempValue%100/10+'0',2,0);//显示 OLED_ShowChar(64,4,setTempValue%10+'0',2,0);//显示 } if(setn==2) { OLED_ShowChar(56,4,setSmokeValue%100/10+'0',2,0);//显示 OLED_ShowChar(64,4,setSmokeValue%10+'0',2,0);//显示 OLED_ShowChar(72,4,'%',2,0); } if(setn>=3) { for(i = 0;i < 11;i ++) { OLED_ShowChar((add++)*8,4,PhoneNumber[i],2,(setn+1)-(3+i));//显示手机号码 } } } void keyscan(void) //按键扫描 { u8 i; if(KEY1 == 0) //设置键 { delay_ms(20); if(KEY1 == 0) { while(KEY1 == 0); setn ++; if(setn == 1) { OLED_CLS();//清屏 for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+10,0);//显示中文:设置温度 OLED_ShowCentigrade(75, 4); //显示摄氏度 } if(setn == 2) { for(i = 0;i < 4;i ++)OLED_ShowCN(i*16+32,0,i+14,0);//显示中文:设置烟雾 OLED_ShowChar(80,4,' ',2,0); } if(setn == 3) { for(i = 0;i < 6;i ++)OLED_ShowCN(i*16+16,0,i+18,0);//显示中文:设置手机号码 } if(setn >= 14) { setn = 0; OLED_CLS();//清屏 displayInitInterface(); STMFLASH_Write(FLASH_SAVE_ADDR + 0x40,(u16*)PhoneNumber,11); //退出设置,存入设置的手机号 } displaySetValue(); } } if(KEY2 == 0) //加键 { delay_ms(80); if(KEY2 == 0) { if(setTempValue < 99 && setn==1)setTempValue++; if(setSmokeValue < 99 && setn==2)setSmokeValue++; if(setn>=3) { PhoneNumber[setn-3]++; if(PhoneNumber[setn-3]>'9')PhoneNumber[setn-3]='0'; } displaySetValue(); } } if(KEY3 == 0) //减键 { delay_ms(80); if(KEY3 == 0) { if(setn==0) { fangdao=!fangdao; display_mode(); } if(setTempValue > 0 && setn==1)setTempValue--; if(setSmokeValue > 0 && setn==2)setSmokeValue--; if(setn>=3) { PhoneNumber[setn-3]--; if(PhoneNumber[setn-3]<'0')PhoneNumber[setn-3]='9'; } displaySetValue(); } } } int main(void) { bool flameFlag=0; bool SomebodyFlag=0; char SEND_BUF[400]; //发送短信缓存 delay_init(); //延时函数初始化 NVIC_Configuration(); //中断优先级配置 I2C_Configuration(); //IIC初始化 STM32_FlashCheck(); //FLASH初始化 delay_ms(200); OLED_Init(); //OLED液晶初始化 OLED_CLS(); //清屏 OLED_ShowStr(0,2," GSM Init... ",2,0); uart1_Init(9600); gsm_init();//gsm初始化 OLED_CLS();//清屏 Adc_Init(); //adc初始化 KEY_GPIO_Init(); //按键引脚初始化 SR501_GPIO_Init(); //人体红外初始化 DS18B20_GPIO_Init(); //温度初始化 DS18B20_Init(); //初始化显示 displayInitInterface(); //显示初始界面 TIM3_Init(99,719); //定时器初始化,定时1ms //Tout = ((arr+1)*(psc+1))/Tclk ; //Tclk:定时器输入频率(单位MHZ) //Tout:定时器溢出时间(单位us) while(1) { keyscan(); //按键扫描 if(setn == 0) { if(shuaxin == 1) //大概300ms刷新一次数据 { Get_Temperature(); //获取温度 Get_Smoke(); //获取烟雾 shuaxin = 0; } if(FLAME == 0) //检测到火焰 { delay_ms(10); if(FLAME == 0) { if(flameFlag == 0) { OLED_DrawBMP(88,4,120,8,(unsigned char *)BMP1); //显示火焰图片 sendSmsFlag = 1; //发送短信标志 } flameFlag = 1; } } else { if(flameFlag == 1) { OLED_ShowStr(88, 4, " ", 2,0); OLED_ShowStr(88, 6, " ", 2,0); } flameFlag = 0; } if(fangdao==1&&SR501==1) //在防盗模式下检测到有人 { if(SomebodyFlag==0) { OLED_DrawBMP(0,0,32,4,(unsigned char *)BMP2); //图显示 sendSmsFlag = 4; //发送短信标志 SomebodyFlag = 1; } } else { if(SomebodyFlag==1) { OLED_ShowStr(0, 0, " ", 2,0); OLED_ShowStr(0, 2, " ", 2,0); SomebodyFlag = 0; } } if(temperature>=setTempValue || smoke>=setSmokeValue || flameFlag || SomebodyFlag)BEEP=1;else BEEP=0; //检测到温度烟雾超标火焰蜂鸣器报警 if(temperature>=setTempValue)FAN=1;else FAN=0; //温度超标都开启风扇 if(smoke>=setSmokeValue || flameFlag)RELAY = 1; else RELAY = 0; //检测到有火或者烟雾超标,开启水泵 if(sendSmsFlag != 0) //发送短信 { char TEMP_BUF[100]; /*******************************************************************************************/ /*******************以下为短信内容处理部分,发送中文短信必须转换为Unicode码**************/ /******************************************************************************************/ memset(SEND_BUF,0,sizeof(SEND_BUF)); //清空缓冲区 switch(sendSmsFlag) { case(1): strcat(SEND_BUF,"8B66544AFF0168C06D4B5230706B7130FF01"); break; //警告!检测到火焰! case(2): strcat(SEND_BUF,"8B66544AFF016E295EA68FC79AD8FF01"); break; //警告!温度过高! case(3): strcat(SEND_BUF,"8B66544AFF0170DF96FE6D535EA68FC79AD8FF01"); break; //警告!烟雾浓度过高! case(4): strcat(SEND_BUF,"8B66544AFF0168C06D4B523067094EBAFF01"); break; //警告!检测到有人! default: break; } if(sendSmsFlag!=4) { memset(TEMP_BUF,0,sizeof(TEMP_BUF)); //清空缓冲区 sprintf(TEMP_BUF,"6E295EA6003A003%1d003%1d2103FF0C70DF96FE003A003%1d003%1d0025",temperature/10,temperature%10,smoke/10,smoke%10); strcat(SEND_BUF,TEMP_BUF); } sim800_send_sms((char *)SEND_BUF);//发送短信 sendSmsFlag = 0; /*******************************************************************************************/ /*************************** end *****************************/ /******************************************************************************************/ } } delay_ms(10); } } void TIM3_IRQHandler(void)//定时器3中断服务程序,用于记录时间 { static u16 timeCount1 = 0; if (TIM_GetITStatus(TIM3, TIM_IT_Update) != RESET) //检查指定的TIM中断发生与否:TIM 中断源 { TIM_ClearITPendingBit(TIM3, TIM_IT_Update); //清除中断标志位 timeCount1++; if(timeCount1 >= 300) //300ms { timeCount1 = 0; shanshuo = !shanshuo; shuaxin = 1; } } } ADC初始化程序 #include "adc.h" #include "delay.h" //初始化ADC //这里我们仅以规则通道为例 //我们默认将开启通道0~3 void Adc_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB |RCC_APB2Periph_ADC1 , ENABLE ); //使能ADC1通道时钟 RCC_ADCCLKConfig(RCC_PCLK2_Div8); //设置ADC分频因子6 72M/8=9,ADC最大时间不能超过14M GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1|GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚 GPIO_Init(GPIOB, &GPIO_InitStructure); ADC_DeInit(ADC1); //复位ADC1,将外设 ADC1 的全部寄存器重设为缺省值 ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式 ADC_InitStructure.ADC_ScanConvMode = DISABLE; //模数转换工作在单通道模式 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //模数转换工作在单次转换模式 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //转换由软件而不是外部触发启动 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐 ADC_InitStructure.ADC_NbrOfChannel = 1; //顺序进行规则转换的ADC通道的数目 ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器 ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1 ADC_ResetCalibration(ADC1); //使能复位校准 while(ADC_GetResetCalibrationStatus(ADC1)); //等待复位校准结束 ADC_StartCalibration(ADC1); //开启AD校准 while(ADC_GetCalibrationStatus(ADC1)); //等待校准结束 } //获得ADC值 //ch:通道值 9 u16 Get_Adc(u8 ch) { //设置指定ADC的规则组通道,一个序列,采样时间 ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_71Cycles5 ); //ADC1,ADC通道,采样时间为13.5周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //使能指定的ADC1的软件转换启动功能 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC ));//等待转换结束 return ADC_GetConversionValue(ADC1); //返回最近一次ADC1规则组的转换结果 } u16 Get_Adc_Average(u8 ch,u8 times) { u32 temp_val=0; u8 t; for(t=0;t<times;t++) { temp_val+=Get_Adc(ch); delay_ms(5); } return temp_val/times; } #ifndef __ADC_H #define __ADC_H #include "sys.h" void Adc_Init(void); u16 Get_Adc(u8 ch); u16 Get_Adc_Average(u8 ch,u8 times); #endif GPIO引脚初始化程序 #include "gpio.h" ////////////////////////////////////////////////////////////////////////////////// //按键舵机的GPIO设置 ////////////////////////////////////////////////////////////////////////////////// void KEY_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO, ENABLE); //使能PABC端口时钟 GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE); //关闭JTAG模式 使PB3,PB4变成普通IO口 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12|GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入 GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO口速度为50MHz GPIO_Init(GPIOC, &GPIO_InitStructure); GPIO_ResetBits(GPIOC,GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15); //输出0 } void SR501_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能PA端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; // 端口配置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //下拉输入 GPIO_Init(GPIOA, &GPIO_InitStructure); } #ifndef __GPIO_H #define __GPIO_H #include "sys.h" #define KEY1 PBin(12) #define KEY2 PBin(13) #define KEY3 PBin(14) #define FLAME PBin(15) #define BEEP PCout(13) #define FAN PCout(14) #define RELAY PCout(15) #define SR501 PAin(0) void KEY_GPIO_Init(void);//引脚初始化 void SR501_GPIO_Init(void); #endif OLED驱动程序 /************************************************************************************ * * Description:128*64点阵的OLED显示屏驱动文件SD1306驱动IIC通信方式显示屏 * * Others: none; * * Function List: * 1. void I2C_Configuration(void) -- 配置CPU的硬件I2C * 2. void I2C_WriteByte(uint8_t addr,uint8_t data) -- 向寄存器地址写一个byte的数据 * 3. void WriteCmd(unsigned char I2C_Command) -- 写命令 * 4. void WriteDat(unsigned char I2C_Data) -- 写数据 * 5. void OLED_Init(void) -- OLED屏初始化 * 6. void OLED_SetPos(unsigned char x, unsigned char y) -- 设置起始点坐标 * 7. void OLED_Fill(unsigned char fill_Data) -- 全屏填充 * 8. void OLED_CLS(void) -- 清屏 * 9. void OLED_ON(void) -- 唤醒 * 10. void OLED_OFF(void) -- 睡眠 * 11. void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize) -- 显示字符串(字体大小有6*8和8*16两种) * 12. void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N) -- 显示中文(中文需要先取模,然后放到codetab.h中) * 13. void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]) -- BMP图片 * * History: none; * *************************************************************************************/ #include "OLED_I2C.h" #include "delay.h" #include "codetab.h" /* 定义I2C总线连接的GPIO端口, 用户只需要修改下面4行代码即可任意改变SCL和SDA的引脚 */ #define RCC_I2C_PORT RCC_APB2Periph_GPIOB /* GPIO端口时钟 */ #define PORT_I2C_SCL GPIOB /* GPIO端口 */ #define PIN_I2C_SCL GPIO_Pin_6 /* GPIO引脚 */ #define PORT_I2C_SDA GPIOB /* GPIO端口 */ #define PIN_I2C_SDA GPIO_Pin_7 /* GPIO引脚 */ #define I2C_SCL_PIN GPIO_Pin_6 /* 连接到SCL时钟线的GPIO */ #define I2C_SDA_PIN GPIO_Pin_7 /* 连接到SDA数据线的GPIO */ /* 定义读写SCL和SDA的宏 */ #define I2C_SCL_1() PORT_I2C_SCL->BSRR = I2C_SCL_PIN /* SCL = 1 */ #define I2C_SCL_0() PORT_I2C_SCL->BRR = I2C_SCL_PIN /* SCL = 0 */ #define I2C_SDA_1() PORT_I2C_SDA->BSRR = I2C_SDA_PIN /* SDA = 1 */ #define I2C_SDA_0() PORT_I2C_SDA->BRR = I2C_SDA_PIN /* SDA = 0 */ #define I2C_SDA_READ() ((PORT_I2C_SDA->IDR & I2C_SDA_PIN) != 0) /* 读SDA口线状态 */ #define I2C_SCL_READ() ((PORT_I2C_SCL->IDR & I2C_SCL_PIN) != 0) /* 读SCL口线状态 */ /* ********************************************************************************************************* * 函 数 名: bsp_InitI2C * 功能说明: 配置I2C总线的GPIO,采用模拟IO的方式实现 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_InitI2C_2(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_I2C_PORT, ENABLE); /* 打开GPIO时钟 */ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; /* 开漏输出模式 */ GPIO_InitStructure.GPIO_Pin = PIN_I2C_SCL; GPIO_Init(PORT_I2C_SCL, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = PIN_I2C_SDA; GPIO_Init(PORT_I2C_SDA, &GPIO_InitStructure); /* 给一个停止信号, 复位I2C总线上的所有设备到待机模式 */ i2c_Stop_2(); } /* ********************************************************************************************************* * 函 数 名: i2c_Start * 功能说明: CPU发起I2C总线启动信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Start_2(void) { /* 当SCL高电平时,SDA出现一个下跳沿表示I2C总线启动信号 */ I2C_SDA_1(); I2C_SCL_1(); delay_us(4); I2C_SDA_0(); delay_us(4); I2C_SCL_0(); } /* ********************************************************************************************************* * 函 数 名: i2c_Start * 功能说明: CPU发起I2C总线停止信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Stop_2(void) { /* 当SCL高电平时,SDA出现一个上跳沿表示I2C总线停止信号 */ I2C_SDA_0(); I2C_SCL_1(); delay_us(4); I2C_SDA_1(); delay_us(4); } /* ********************************************************************************************************* * 函 数 名: i2c_SendByte * 功能说明: CPU向I2C总线设备发送8bit数据 * 形 参: _ucByte : 等待发送的字节 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_SendByte_2(uint8_t _ucByte) { uint8_t i; /* 先发送字节的高位bit7 */ for (i = 0; i < 8; i++) { if (_ucByte & 0x80) { I2C_SDA_1(); } else { I2C_SDA_0(); } delay_us(2); I2C_SCL_1(); delay_us(2); I2C_SCL_0(); _ucByte <<= 1; /* 左移一个bit */ delay_us(2); } } /* ********************************************************************************************************* * 函 数 名: i2c_ReadByte * 功能说明: CPU从I2C总线设备读取8bit数据 * 形 参: 无 * 返 回 值: 读到的数据 ********************************************************************************************************* */ uint8_t i2c_ReadByte_2(void) { uint8_t i; uint8_t value; /* 读到第1个bit为数据的bit7 */ value = 0; for (i = 0; i < 8; i++) { value <<= 1; I2C_SCL_1();//SCL在高电平期间,数据必须保持稳定 delay_us(2); if (I2C_SDA_READ()) { value++; } I2C_SCL_0(); delay_us(1); } return value; } /* ********************************************************************************************************* * 函 数 名: i2c_WaitAck * 功能说明: CPU产生一个时钟,并读取器件的ACK应答信号 * 形 参: 无 * 返 回 值: 返回0表示正确应答,1表示无器件响应 ********************************************************************************************************* */ uint8_t i2c_WaitAck_2(void) { uint8_t tempTime; I2C_SDA_1(); /* CPU释放SDA总线 */ delay_us(1); I2C_SCL_1(); /* CPU驱动SCL = 1, 此时器件会返回ACK应答 */ delay_us(1); while(I2C_SDA_READ()) { tempTime++; if(tempTime>250) { i2c_Stop_2(); return 1; } } I2C_SCL_0(); return 0; } /* ********************************************************************************************************* * 函 数 名: i2c_Ack * 功能说明: CPU产生一个ACK信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_Ack_2(void) { I2C_SDA_0(); /* CPU驱动SDA = 0 */ delay_us(5); I2C_SCL_1(); /* CPU产生1个时钟 */ delay_us(5); I2C_SCL_0(); delay_us(5); I2C_SDA_1(); /* CPU释放SDA总线 */ } /* ********************************************************************************************************* * 函 数 名: i2c_NAck * 功能说明: CPU产生1个NACK信号 * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ void i2c_NAck_2(void) { I2C_SDA_1(); /* CPU驱动SDA = 1 */ delay_us(5); I2C_SCL_1(); /* CPU产生1个时钟 */ delay_us(5); I2C_SCL_0(); delay_us(5); } void I2C_Configuration(void) { bsp_InitI2C_2(); } void I2C_WriteByte(uint8_t addr,uint8_t data) { /* 第1步:发起I2C总线启动信号 */ i2c_Start_2(); /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */ i2c_SendByte_2(OLED_ADDRESS | I2C_WR); /* 此处是写指令 */ /* 第3步:发送ACK */ i2c_WaitAck_2(); /* 第4步:发送字节地址 */ i2c_SendByte_2(addr); i2c_WaitAck_2(); /* 第5步:开始写入数据 */ i2c_SendByte_2(data); /* 第6步:发送ACK */ i2c_WaitAck_2(); /* 发送I2C总线停止信号 */ i2c_Stop_2(); } void WriteCmd(unsigned char I2C_Command)//写命令 { I2C_WriteByte(0x00, I2C_Command); } void WriteDat(unsigned char I2C_Data)//写数据 { I2C_WriteByte(0x40, I2C_Data); } void OLED_Init(void) { delay_ms(100); //这里的延时很重要 WriteCmd(0xAE); //display off WriteCmd(0x20); //Set Memory Addressing Mode WriteCmd(0x10); //00,Horizontal Addressing Mode;01,Vertical Addressing Mode;10,Page Addressing Mode (RESET);11,Invalid WriteCmd(0xb0); //Set Page Start Address for Page Addressing Mode,0-7 WriteCmd(0xc8); //Set COM Output Scan Direction WriteCmd(0x00); //---set low column address WriteCmd(0x10); //---set high column address WriteCmd(0x40); //--set start line address WriteCmd(0x81); //--set contrast control register WriteCmd(0xff); //亮度调节 0x00~0xff WriteCmd(0xa1); //--set segment re-map 0 to 127 WriteCmd(0xa6); //--set normal display WriteCmd(0xa8); //--set multiplex ratio(1 to 64) WriteCmd(0x3F); // WriteCmd(0xa4); //0xa4,Output follows RAM content;0xa5,Output ignores RAM content WriteCmd(0xd3); //-set display offset WriteCmd(0x00); //-not offset WriteCmd(0xd5); //--set display clock divide ratio/oscillator frequency WriteCmd(0xf0); //--set divide ratio WriteCmd(0xd9); //--set pre-charge period WriteCmd(0x22); // WriteCmd(0xda); //--set com pins hardware configuration WriteCmd(0x12); WriteCmd(0xdb); //--set vcomh WriteCmd(0x20); //0x20,0.77xVcc WriteCmd(0x8d); //--set DC-DC enable WriteCmd(0x14); // WriteCmd(0xaf); //--turn on oled panel } void OLED_SetPos(unsigned char x, unsigned char y) //设置起始点坐标 { WriteCmd(0xb0+y); WriteCmd(((x&0xf0)>>4)|0x10); WriteCmd((x&0x0f)|0x01); } void OLED_Fill(unsigned char fill_Data)//全屏填充 { unsigned char m,n; for(m=0;m<8;m++) { WriteCmd(0xb0+m); //page0-page1 WriteCmd(0x00); //low column start address WriteCmd(0x10); //high column start address for(n=0;n<128;n++) { WriteDat(fill_Data); } } } void OLED_CLS(void)//清屏 { OLED_Fill(0x00); } //-------------------------------------------------------------- // Prototype : void OLED_ON(void) // Calls : // Parameters : none // Description : 将OLED从休眠中唤醒 //-------------------------------------------------------------- void OLED_ON(void) { WriteCmd(0X8D); //设置电荷泵 WriteCmd(0X14); //开启电荷泵 WriteCmd(0XAF); //OLED唤醒 } //-------------------------------------------------------------- // Prototype : void OLED_OFF(void) // Calls : // Parameters : none // Description : 让OLED休眠 -- 休眠模式下,OLED功耗不到10uA //-------------------------------------------------------------- void OLED_OFF(void) { WriteCmd(0X8D); //设置电荷泵 WriteCmd(0X10); //关闭电荷泵 WriteCmd(0XAE); //OLED休眠 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~7 //chr:显示的字符 //TextSize:字符大小(1:6*8 ; 2:8*16) //mode:1,反白显示;0,正常显示 void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char TextSize,u8 mode) { unsigned char c=0,i=0; c=chr-' ';//得到偏移后的值 if(TextSize == 2) { if(x>120){x=0;y++;} OLED_SetPos(x,y); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i]));else WriteDat(F8X16[c*16+i]); OLED_SetPos(x,y+1); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i+8]));else WriteDat(F8X16[c*16+i+8]); } else { if(x>126){x=0;y++;} OLED_SetPos(x,y); for(i=0;i<6;i++) if(mode==1)WriteDat(~(F6x8[c][i])); else WriteDat(F6x8[c][i]); } } //-------------------------------------------------------------- // Prototype : void OLED_ShowChar(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize) // Calls : // Parameters : x,y -- 起始点坐标(x:0~127, y:0~7); ch[] -- 要显示的字符串; TextSize -- 字符大小(1:6*8 ; 2:8*16) // Description : 显示codetab.h中的ASCII字符,有6*8和8*16可选择 //-------------------------------------------------------------- void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize,u8 mode) { unsigned char c = 0,i = 0,j = 0; switch(TextSize) { case 1: { while(ch[j] != '\0') { c = ch[j] - 32; if(x > 126) { x = 0; y++; } OLED_SetPos(x,y); for(i=0;i<6;i++) if(mode==1)WriteDat(~(F6x8[c][i])); else WriteDat(F6x8[c][i]); x += 6; j++; } }break; case 2: { while(ch[j] != '\0') { c = ch[j] - 32; if(x > 120) { x = 0; y++; } OLED_SetPos(x,y); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i])); else WriteDat(F8X16[c*16+i]); OLED_SetPos(x,y+1); for(i=0;i<8;i++) if(mode==1)WriteDat(~(F8X16[c*16+i+8])); else WriteDat(F8X16[c*16+i+8]); x += 8; j++; } }break; } } //-------------------------------------------------------------- // Prototype : void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N) // Calls : // Parameters : x,y -- 起始点坐标(x:0~127, y:0~7); N:汉字在codetab.h中的索引 // Description : 显示codetab.h中的汉字,16*16点阵 //mode:1,反白显示;0,正常显示 //-------------------------------------------------------------- void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N,u8 mode) { unsigned char wm=0; unsigned int adder=32*N; OLED_SetPos(x , y); for(wm = 0;wm < 16;wm++) { if(mode==1)WriteDat(~(F16x16[adder]));else WriteDat(F16x16[adder]); adder += 1; } OLED_SetPos(x,y + 1); for(wm = 0;wm < 16;wm++) { if(mode==1)WriteDat(~(F16x16[adder]));else WriteDat(F16x16[adder]); adder += 1; } } //-------------------------------------------------------------- // Prototype : void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]); // Calls : // Parameters : x0,y0 -- 起始点坐标(x0:0~127, y0:0~7); x1,y1 -- 起点对角线(结束点)的坐标(x1:1~128,y1:1~8) // Description : 显示BMP位图 //-------------------------------------------------------------- void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]) { unsigned int j=0; unsigned char x,y; if(y1%8==0) y = y1/8; else y = y1/8 + 1; for(y=y0;y<y1;y++) { OLED_SetPos(x0,y); for(x=x0;x<x1;x++) { WriteDat(BMP[j++]); } } } void OLED_ShowCentigrade(unsigned char x, unsigned char y)//显示℃ { unsigned char wm=0; unsigned char BUF[]={ 0x10,0x28,0x10,0xC0,0x20,0x10,0x10,0x10,0x20,0x70,0x00,0x00,0x00,0x00,0x00,0x07, 0x08,0x10,0x10,0x10,0x10,0x08,0x04,0x00,/*"℃"*/ }; OLED_SetPos(x , y); for(wm = 0;wm < 12;wm++) { WriteDat(BUF[wm]); } OLED_SetPos(x,y + 1); for(wm = 0;wm < 12;wm++) { WriteDat(BUF[wm+12]); } } #ifndef __OLED_I2C_H #define __OLED_I2C_H #include "stm32f10x.h" #define OLED_ADDRESS 0x78 //通过调整0R电阻,屏可以0x78和0x7A两个地址 -- 默认0x78 #define I2C_WR 0 /* 写控制bit */ #define I2C_RD 1 /* 读控制bit */ void bsp_InitI2C_2(void); void i2c_Start_2(void); void i2c_Stop_2(void); void i2c_SendByte_2(uint8_t _ucByte); uint8_t i2c_ReadByte_2(void); uint8_t i2c_WaitAck_2(void); void i2c_Ack_2(void); void i2c_NAck_2(void); void I2C_Configuration(void); void I2C_WriteByte(uint8_t addr,uint8_t data); void WriteCmd(unsigned char I2C_Command); void WriteDat(unsigned char I2C_Data); void OLED_Init(void); void OLED_SetPos(unsigned char x, unsigned char y); void OLED_Fill(unsigned char fill_Data); void OLED_CLS(void); void OLED_ON(void); void OLED_OFF(void); void OLED_ShowChar(unsigned char x,unsigned char y,unsigned char chr,unsigned char TextSize,u8 mode); void OLED_ShowStr(unsigned char x, unsigned char y, unsigned char ch[], unsigned char TextSize,u8 mode); void OLED_ShowCN(unsigned char x, unsigned char y, unsigned char N,u8 mode); void OLED_DrawBMP(unsigned char x0,unsigned char y0,unsigned char x1,unsigned char y1,unsigned char BMP[]); void OLED_ShowCentigrade(unsigned char x, unsigned char y); #endif TIME定时器程序 #include "timer.h" //通用定时器中断初始化 //这里时钟选择为APB1的2倍,而APB1为36M //arr:自动重装值。 //psc:时钟预分频数 //这里使用的是定时器3! void TIM3_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //时钟使能 TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值 计数到5000为500ms TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值 10Khz的计数频率 TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //TIM向上计数模式 TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位 TIM_ITConfig( //使能或者失能指定的TIM中断 TIM3, //TIM3 TIM_IT_Update , ENABLE //使能 ); NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //先占优先级0级 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //从优先级2级 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器 TIM_Cmd(TIM3, ENABLE); //使能定时器3 } #ifndef __TIMER_H #define __TIMER_H #include "sys.h" void TIM3_Init(u16 arr,u16 psc); #endif DS18B20温度程序 #include "ds18b20.h" #include "delay.h" /******************************************************************************* 函数名:DS18B20_GPIO_Init 功能:初始化DS18B20引脚 输入: 输出: 返回值: 备注: *******************************************************************************/ void DS18B20_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_DS18B20_PORT, ENABLE); //使能PORTA口时钟 GPIO_InitStructure.GPIO_Pin = DS18B20_GPIO_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(DS18B20_GPIO_PORT, &GPIO_InitStructure); GPIO_SetBits(DS18B20_GPIO_PORT,DS18B20_GPIO_PIN); //输出1 } /******************************************************************************* 函数名:DS18B20_Init 功能:初始化DS18B20 输入: 输出: 返回值:初始化成功为0,不成功为1 备注: *******************************************************************************/ u8 DS18B20_Init(void) { unsigned char wait=0; DS18B20_IO_OUT(); //输出模式 DS18B20_OUT_0; //拉低 delay_us(750); //至少延时480us DS18B20_OUT_1; //拉高 delay_us(15); //15us DS18B20_IO_IN(); //输入模式 while(READ_DS18B20_IO && wait++<200)delay_us(1);//等待高电平结束 if(wait>=200)return 1; else wait=0; while(!READ_DS18B20_IO && wait++<240)delay_us(1);//等待低电平结束 if(wait>=240)return 1; else return 0; } /******************************************************************************* 函数名:DS18B20_ReadByte 功能:从DS18B20读一个字节 输入: 输出: 返回值:读取到的字节 备注: *******************************************************************************/ unsigned char DS18B20_ReadByte(void) { unsigned char i; unsigned char dat = 0; for (i=0; i<8; i++) //8位计数器 { dat >>= 1; DS18B20_IO_OUT(); //输出模式 DS18B20_OUT_0; //开始时间片 delay_us(2); //延时等待 DS18B20_OUT_1; //准备接收 DS18B20_IO_IN(); //输入模式 delay_us(12); //接收延时 if(READ_DS18B20_IO) dat |= 0x80; //读取数据 delay_us(60); //等待时间片结束 } return dat; } /******************************************************************************* 函数名:DS18B20_WriteByte 功能:写一个字节 输入:unsigned char dat 输出: 返回值: 备注: *******************************************************************************/ void DS18B20_WriteByte(unsigned char dat) { unsigned char i; unsigned char temp; DS18B20_IO_OUT();//输出模式 for (i=1; i<=8; i++) { temp = dat & 0x01; dat = dat >> 1; if (temp) { DS18B20_OUT_0; delay_us(2); DS18B20_OUT_1; //写1 delay_us(60); } else { DS18B20_OUT_0;//写0 delay_us(60); DS18B20_OUT_1; delay_us(2); } } } /************************************** 从DS18B20中获取温度值得浮点值 参数: 空 返回值: 读取到的温度值(有效范围-55.0~125.0) **************************************/ float ReadTemperature(void) { unsigned char TPH; //存放温度值的高字节 unsigned char TPL; //存放温度值的低字节 short i16=0; float f32=0; DS18B20_Init(); DS18B20_WriteByte(0xCC); //跳过ROM命令 DS18B20_WriteByte(0x44); //开始转换命令 DS18B20_Init(); DS18B20_WriteByte(0xCC); //跳过ROM命令 DS18B20_WriteByte(0xBE); //读暂存存储器命令 TPL = DS18B20_ReadByte(); //读温度低字节 TPH = DS18B20_ReadByte(); //读温度高字节 i16 = 0; i16 = (TPH<<8) |TPL; // 将高位(MSB)与低位(LSB)合并 f32 = i16 * 0.0625; // 12bit精度时温度值计算 return(f32); // 返回读取到的温度数值(float型) } #ifndef __DS18B20_H #define __DS18B20_H #include "sys.h" //如果想要修改引脚,只需修改下面的宏 #define RCC_DS18B20_PORT RCC_APB2Periph_GPIOA /* GPIO端口时钟 */ #define DS18B20_GPIO_PIN GPIO_Pin_11 #define DS18B20_GPIO_PORT GPIOA //IO方向设置(CRL寄存器对应引脚0~7,CRH寄存器对应引脚8~15) //DS18B20_GPIO_PORT->CRH&=0xFFFFFFF0为PA8引脚输出模式对应的寄存器清空 //DS18B20_GPIO_PORT->CRH|=0x00000008将(CNF8[1:0]设置为10:上拉/下拉输入模式,MODE8[1;0]设置为00:输入模式) //DS18B20_GPIO_PORT->CRH|=0x00000003将(CNF8[1:0]设置为00:通用推挽输出模式 ,MODE8[1;0]设置为11:最大50MHZ) #define DS18B20_IO_IN() {DS18B20_GPIO_PORT->CRH&=0xFFFF0FFF;DS18B20_GPIO_PORT->CRH|=0x00008000;} #define DS18B20_IO_OUT() {DS18B20_GPIO_PORT->CRH&=0xFFFF0FFF;DS18B20_GPIO_PORT->CRH|=0x00003000;} #define DS18B20_OUT_0 GPIO_ResetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//IO为低电平 #define DS18B20_OUT_1 GPIO_SetBits(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//IO为高电平 #define READ_DS18B20_IO GPIO_ReadInputDataBit(DS18B20_GPIO_PORT, DS18B20_GPIO_PIN)//读取IO电平 void DS18B20_GPIO_Init(void); u8 DS18B20_Init(void); //初始化DS18B20 float ReadTemperature(void); //获取温度值 #endif 修改代码中使用OLED的部分,改为使用LCD1602实现

txt
内容概要:本文档定义了一个名为 xxx_SCustSuplier_info 的视图,用于整合和展示客户(Customer)和供应商(Supplier)的相关信息。视图通过连接多个表来获取组织单位、客户账户、站点使用、位置、财务代码组合等数据。对于客户部分,视图选择了与账单相关的记录,并提取了账单客户ID、账单站点ID、客户名称、账户名称、站点代码、状态、付款条款等信息;对于供应商部分,视图选择了有效的供应商及其站点信息,包括供应商ID、供应商名称、供应商编号、状态、付款条款、财务代码组合等。视图还通过外连接确保即使某些字段为空也能显示相关信息。 适合人群:熟悉Oracle ERP系统,尤其是应付账款(AP)和应收账款(AR)模块的数据库管理员或开发人员;需要查询和管理客户及供应商信息的业务分析师。 使用场景及目标:① 数据库管理员可以通过此视图快速查询客户和供应商的基本信息,包括账单信息、财务代码组合等;② 开发人员可以利用此视图进行报表开发或数据迁移;③ 业务分析师可以使用此视图进行数据分析,如信用评估、付款周期分析等。 阅读建议:由于该视图涉及多个表的复杂连接,建议读者先熟悉各个表的结构和关系,特别是 hz_parties、hz_cust_accounts、ap_suppliers 等核心表。此外,注意视图中使用的外连接(如 gl_code_combinations_kfv 表的连接),这可能会影响查询结果的完整性。

最新推荐

recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。
recommend-type

【进阶Python绘图】:掌握matplotlib坐标轴刻度间隔的高级技巧,让你的图表脱颖而出

# 摘要 本文系统地探讨了matplotlib库中坐标轴刻度间隔的定制与优化技术。首先概述了matplotlib坐标轴刻度间隔的基本概念及其在图表中的重要性,接
recommend-type

降帧是什么意思

<think>首先,用户的问题是:“我想了解降帧的含义 请问降帧是什么意思”。我需要用中文回答,并确保回答结构清晰,帮助用户逐步解决问题。 关键点是“降帧”。在视频处理、动画或游戏上下文中,“降帧”通常指的是帧率下降或丢帧(frame drop)。结合系统提供的引用,我可以看到相关概念。 回顾提供的引用: - 引用[1]:讨论了帧率和丢帧分析,提到应用丢帧导致帧率下降,造成卡顿。例如,在60Hz刷新率下,每帧需要在16.7ms内完成,否则可能丢帧。 - 引用[2]:提到掉帧(Frame Drop),与CPU和GPU相关。CPU或GPU处理不及时会导致帧无法按时渲染。 - 引用[3]:
recommend-type

深入理解J2EE中文版教程指南

根据给定的信息,我们可以分析出所涉及的知识点主要集中在Java 2 Platform, Enterprise Edition,也就是J2EE。J2EE是Java的一个平台,用于开发和部署企业级应用。它提供了一套服务、APIs以及协议,使得开发者能够构建多层、基于组件、分布式、安全的应用。 首先,要对J2EE有一个清晰的认识,我们需要理解J2EE平台所包含的核心组件和服务。J2EE提供了多种服务,主要包括以下几点: 1. **企业JavaBeans (EJBs)**:EJB技术允许开发者编写可复用的服务器端业务逻辑组件。EJB容器管理着EJB组件的生命周期,包括事务管理、安全和并发等。 2. **JavaServer Pages (JSP)**:JSP是一种用来创建动态网页的技术。它允许开发者将Java代码嵌入到HTML页面中,从而生成动态内容。 3. **Servlets**:Servlets是运行在服务器端的小型Java程序,用于扩展服务器的功能。它们主要用于处理客户端的请求,并生成响应。 4. **Java Message Service (JMS)**:JMS为在不同应用之间传递消息提供了一个可靠、异步的机制,这样不同部分的应用可以解耦合,更容易扩展。 5. **Java Transaction API (JTA)**:JTA提供了一套用于事务管理的APIs。通过使用JTA,开发者能够控制事务的边界,确保数据的一致性和完整性。 6. **Java Database Connectivity (JDBC)**:JDBC是Java程序与数据库之间交互的标准接口。它允许Java程序执行SQL语句,并处理结果。 7. **Java Naming and Directory Interface (JNDI)**:JNDI提供了一个目录服务,用于J2EE应用中的命名和目录查询功能。它可以查找和访问分布式资源,如数据库连接、EJB等。 在描述中提到的“看了非常的好,因为是详细”,可能意味着这份文档或指南对J2EE的各项技术进行了深入的讲解和介绍。指南可能涵盖了从基础概念到高级特性的全面解读,以及在实际开发过程中如何运用这些技术的具体案例和最佳实践。 由于文件名称为“J2EE中文版指南.doc”,我们可以推断这份文档应该是用中文编写的,因此非常适合中文读者阅读和学习J2EE技术。文档的目的是为了指导读者如何使用J2EE平台进行企业级应用的开发和部署。此外,提到“压缩包子文件的文件名称列表”,这里可能存在一个打字错误,“压缩包子”应为“压缩包”,表明所指的文档被包含在一个压缩文件中。 由于文件的详细内容没有被提供,我们无法进一步深入分析其具体内容,但可以合理推断该指南会围绕以下核心概念: - **多层架构**:J2EE通常采用多层架构,常见的分为表示层、业务逻辑层和数据持久层。 - **组件模型**:J2EE平台定义了多种组件,包括EJB、Web组件(Servlet和JSP)等,每个组件都在特定的容器中运行,容器负责其生命周期管理。 - **服务和APIs**:J2EE定义了丰富的服务和APIs,如JNDI、JTA、JMS等,以支持复杂的业务需求。 - **安全性**:J2EE平台也提供了一套安全性机制,包括认证、授权、加密等。 - **分布式计算**:J2EE支持分布式应用开发,允许不同的组件分散在不同的物理服务器上运行,同时通过网络通信。 - **可伸缩性**:为了适应不同规模的应用需求,J2EE平台支持应用的水平和垂直伸缩。 总的来说,这份《J2EE中文版指南》可能是一份对J2EE平台进行全面介绍的参考资料,尤其适合希望深入学习Java企业级开发的程序员。通过详细阅读这份指南,开发者可以更好地掌握J2EE的核心概念、组件和服务,并学会如何在实际项目中运用这些技术构建稳定、可扩展的企业级应用。