逻辑回归做乳腺癌分析python代码
时间: 2023-09-12 12:02:54 浏览: 289
下面是使用Python进行逻辑回归分析乳腺癌数据集的代码:
首先需要导入所需的库:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```
然后读取数据集:
```python
data = pd.read_csv("breast_cancer_data.csv")
```
接着,将数据集分为训练集和测试集:
```python
X = data.drop('diagnosis', axis=1)
y = data['diagnosis']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
使用逻辑回归模型拟合训练集:
```python
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```
使用测试集评估模型准确率:
```python
y_pred = logreg.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy of Logistic Regression model:", accuracy)
```
完整代码如下:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# 读取数据集
data = pd.read_csv("breast_cancer_data.csv")
# 分为训练集和测试集
X = data.drop('diagnosis', axis=1)
y = data['diagnosis']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 拟合逻辑回归模型
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
# 评估模型准确率
y_pred = logreg.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy of Logistic Regression model:", accuracy)
```
注意:这里的数据集文件名为"breast_cancer_data.csv",需要根据实际情况修改文件名。
阅读全文
相关推荐















