scrapy爬取boss直聘

时间: 2023-10-20 20:08:53 浏览: 356
的职位信息有什么注意事项? 当使用Scrapy爬取Boss直聘的职位信息时,需要注意以下几个问题: 1. Boss直聘有反爬虫机制,需要设置合适的请求头、IP代理等反爬虫策略,以避免被封禁。 2. 需要登录才能查看完整的职位信息,可以通过模拟登录或使用Cookie绕过登录。 3. Boss直聘的职位信息是动态加载的,需要使用Selenium等工具来模拟浏览器行为,以获取完整的职位信息。 4. 职位信息中可能存在重复数据或不符合要求的数据,需要进行数据清洗和去重处理。 希望能对您有所帮助!
相关问题

Scrapy爬取Boss直聘

### 使用 Scrapy 框架抓取 Boss 直聘网站信息 #### 创建 Scrapy 项目 首先,需要安装并初始化一个新的 Scrapy 项目。可以通过以下命令完成项目的创建: ```bash scrapy startproject bosszhipin ``` 这将在当前目录下生成一个名为 `bosszhipin` 的文件夹,其中包括多个子模块,如 `items.py`, `pipelines.py`, `settings.py` 等[^3]。 #### 配置 Spider 文件 在 `spiders` 文件夹中新建一个爬虫文件,例如命名为 `job_spider.py`。以下是该文件的一个基本实现示例: ```python import scrapy from ..items import BosszhipinItem class JobSpider(scrapy.Spider): name = 'job' allowed_domains = ['www.zhipin.com'] start_urls = ['https://www.zhipin.com/job_detail/?query=Python&city=101280600'] def parse(self, response): jobs = response.css('div.job-primary') for job in jobs: item = BosszhipinItem() item['title'] = job.css('div.info-primary h3.name a::text').get().strip() # 获取职位名称 item['company'] = job.css('div.info-company div.company-text h3.name a::text').get().strip() # 获取公司名称 item['salary'] = job.css('span.red::text').get().strip() # 获取薪资范围 yield item next_page = response.css('a.next::attr(href)').get() if next_page is not None: yield response.follow(next_page, self.parse) ``` 此代码片段定义了一个简单的爬虫逻辑,它会解析页面中的职位列表,并提取每条记录的关键字段,包括职位名称、公司名称和薪资范围[^4]。 #### 设置 Items 和 Pipelines 为了更好地管理和存储数据,在 `items.py` 中可以定义如下模型类: ```python import scrapy class BosszhipinItem(scrapy.Item): title = scrapy.Field() # 职位名 company = scrapy.Field() # 公司名 salary = scrapy.Field() # 工资区间 ``` 接着修改 `pipelines.py` 实现自定义的数据保存方式(比如存入 CSV 或数据库): ```python import csv class SaveToCsvPipeline(object): def open_spider(self, spider): self.file = open('jobs.csv', mode='w', newline='', encoding='utf-8-sig') self.writer = csv.DictWriter(self.file, fieldnames=['title', 'company', 'salary']) self.writer.writeheader() def process_item(self, item, spider): self.writer.writerow(item) return item def close_spider(self, spider): self.file.close() ``` 最后记得更新 `settings.py` 启用管道功能: ```python ITEM_PIPELINES = { 'bosszhipin.pipelines.SaveToCsvPipeline': 300, } ``` #### 注意事项 为了避免被目标站点封禁 IP 地址或者触发反爬机制,建议调整请求头参数模拟真实浏览器行为,并适当降低下载速度。可以在 `settings.py` 添加这些配置项: ```python USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)' DOWNLOAD_DELAY = 5 # 延迟时间为5秒 ROBOTSTXT_OBEY = False # 不遵循 robots.txt 协议 CONCURRENT_REQUESTS_PER_DOMAIN = 1 # 对单个域名并发数设限 ``` 以上方法能够有效减少因访问频率过高而引发的风险[^4]。

scrapy爬取boss直聘2021

### 回答1: 好的,我可以用中文回复。Scrapy是一个Python框架,可以用来爬取网站数据。如果你想爬取Boss直聘2021的数据,可以使用Scrapy来实现。首先,你需要安装Scrapy和其他必要的Python库。然后,你需要编写一个Scrapy爬虫,来指定要爬取的网站和数据。最后,你可以运行爬虫,将数据保存到本地文件或数据库中。希望这个回复对你有帮助。 ### 回答2: Scrapy是一个开源的Python爬虫框架,它提供了强大的爬虫工具和数据提取方式,能够帮助开发者快速构建出高效的爬虫程序。在本例中,我们将利用Scrapy框架来爬取Boss直聘网站中的招聘信息。 首先,我们需要创建一个新的Scrapy项目,可以通过以下命令来创建: `scrapy startproject bosszhipin` 然后在项目中创建一个名为jobs的Spider(爬虫),在Scrapy中,Spider是最核心的组件之一,它的主要作用是定义了如何对目标网站进行爬取,并指定如何提取数据。 在编写Spider之前,我们需要先研究一下Boss直聘网站的页面结构以及数据获取方式。通过观察页面的HTML代码,我们可以发现每一页的招聘信息都储存在HTML的<div class=”job-list”>标签下,该标签中包含了职位名称、公司名称、薪资、工作地点、学历要求等重要信息。所以我们可以通过正则表达式或XPath来解析这些信息。 定义Spider的过程中,我们需要设置起始URL以及解析规则。我们可以在start_urls变量中指定要爬取的页面链接,例如: ```python start_urls = ['https://www.zhipin.com/c101270100/?query=python&page=1'] ``` 其中c101270100表示深圳城市的编码,query=python表示搜索关键词为“python”,page=1表示要爬取第一页的数据。 接下来,我们需要定义Spider的parse()方法来解析页面。在该方法中,我们可以使用Scrapy提供的Selector来解析HTML代码,并根据需要提取出数据。 ```python def parse(self, response): jobs = response.xpath('//div[@class="job-list"]/ul/li') for job in jobs: item = BosszhipinItem() item['position_name'] = job.xpath('./div[1]/div[1]/h3/a/div[1]/text()').extract_first().strip() item['company_name'] = job.xpath('./div[1]/div[2]/div/h3/a/text()').extract_first().strip() item['salary'] = job.xpath('./div[1]/div[1]/h3/a/span/text()').extract_first().strip() item['location'] = job.xpath('./div[1]/div[1]/p/text()[1]').extract_first().strip() item['education'] = job.xpath('./div[1]/div[1]/p/text()[2]').extract_first().strip() yield item ``` 在上面的代码中,我们先使用XPath选择器定位到<div class=”job-list”>标签下的每个<li>标签,然后分别提取每个<li>标签中的职位名称、公司名称、薪资、工作地点和学历要求,同时将这些信息保存在一个叫做BosszhipinItem的Item类对象中,并通过yield语句返回给管道处理。管道主要的作用是对爬虫抓取到的数据进行清洗和处理,然后将数据存储到合适的地方或者执行其他的操作。 最后,我们需要在settings.py中进行一些设置,如设置User-Agent、延迟请求时间、爬取最大深度等。 ``` python USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36' DOWNLOAD_DELAY = 2 DEPTH_LIMIT = 10 ``` 完成以上步骤之后,你就成功地用Scrapy框架爬取了Boss直聘网站的数据。最后,你可以保存数据到CSV或者JSON文件中,或者将数据直接存储到数据库中,以便进一步的分析和使用。 ### 回答3: Scrapy是一款强大的Python爬虫框架,可以用于大规模的数据采集、提取和处理。在这里,我们将使用Scrapy爬取2021年的Boss直聘数据。以下是相关步骤和注意事项: 1. 确定网站URL 首先,必须找到目标网站的URL,然后进行分析。在本例中,我们访问Boss直聘主页(https://www.zhipin.com/) , 选择搜索框,在浏览器中打开【检查】 , 点击【network】, 出现了许多网站数据。 如图: ![boss直聘API.png](https://i.loli.net/2021/07/12/ELRiAKVJkwWFN2B.png) 当搜索职位时,我们将会看到一个请求从浏览器向https://www.zhipin.com/job_detail/?query=后面跟搜索关键字的URL地址。在下文中,我们将使用这个URL来提取相关的数据。 2. 创建Scrapy项目 接下来,切换到命令行,创建一个新的Scrapy项目。使用命令: "scrapy startproject boss_zhipin" 即可创建一个名为"boss_zhipin" 的新项目。 3. 编写Spider 现在,我们需要创建一个Spider来处理爬取相关数据的逻辑。Scrapy中的Spider类定义如何跟踪网页以及从中提取信息的方法。在本例中,我们将从给定的URL中提取有关职位、公司名称、薪资和地点的信息。 要使用Scrapy的Spider,我们需要创建一个类,如下所示: ``` import scrapy class BossZhipinSpider(scrapy.Spider): name = "BossZhipin" allowed_domains = ["www.zhipin.com"] start_urls = ["https://www.zhipin.com/job_detail/?query=python"] def parse(self, response): pass ``` 在这里,我们定义了一个名为"BossZhipin” 的Spider类,并设置了allowed_domains和start_urls属性。allowed_domains属性告诉Spider只跟踪属于“www.zhipin.com”域的网页。start_urls属性包含我们要开始爬取数据的网址。 parse()方法是Spider类的核心组件,它将从网页中提取数据。在这里,我们将在方法中使用XPath表达式从页获得每个职位的信息。 4. 提取数据 在这个步骤中,我们将使用XPath表达式来提取存储在HTML标记中的数据。从上面的图片中,可以发现相关的数据都存储在HTML标记中。我们需要根据HTML标签所在位置设计XPath表达式。 在这里,我们需要提取“职位名称”,“公司名称”,“薪资”和“工作地点”。两者如下所示: ``` import scrapy from boss_zhipin.items import BossZhipinItem class BossZhipinSpider(scrapy.Spider): name = "BossZhipin" allowed_domains = ["www.zhipin.com"] start_urls = ["https://www.zhipin.com/job_detail/?query=python"] def parse(self, response): items = [] for job in response.xpath('//div[@class="job-list"]/ul/li'): item = BossZhipinItem() # 建立实例以传送各项数据 item['job_title'] = job.xpath('.//div[1]/p/text()').extract()[0] #提取职位名称 item['company'] = job.xpath('.//div[2]/div/h3/a/text()').extract()[0] #提取公司名称 item['salary'] = job.xpath('.//div[2]/div/p/text()').extract()[0] #提取薪资 item['location'] = job.xpath('.//div[2]/div/div[@class="info-detail"]/span[2]/text()').extract()[0] #提取工作地点 items.append(item) return items ``` 5. 储存数据 最后,我们将数据保存在CSV文件中。Scrapy框架提供了一个管道(Pipeline)的概念,将运行每个条目(item)通过它的pipline。我们将使用该管道来将提取的数据保存到CSV文件中。 ``` import scrapy from boss_zhipin.items import BossZhipinItem class BossZhipinSpider(scrapy.Spider): name = "BossZhipin" allowed_domains = ["www.zhipin.com"] start_urls = ["https://www.zhipin.com/job_detail/?query=python"] def parse(self, response): items = [] for job in response.xpath('//div[@class="job-list"]/ul/li'): item = BossZhipinItem() # 建立实例以传送各项数据 item['job_title'] = job.xpath('.//div[1]/p/text()').extract()[0] #提取职位名称 item['company'] = job.xpath('.//div[2]/div/h3/a/text()').extract()[0] #提取公司名称 item['salary'] = job.xpath('.//div[2]/div/p/text()').extract()[0] #提取薪资 item['location'] = job.xpath('.//div[2]/div/div[@class="info-detail"]/span[2]/text()').extract()[0] #提取工作地点 items.append(item) return items def close(spider, reason): filename = 'boss_zhipin_%s.csv' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S')) with open(filename, 'w', newline='', encoding='utf-8') as csvfile: fieldnames = ['job_title', 'company', 'salary', 'location'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for item in spider.items: writer.writerow(item) ``` 最后,我们可以使用以下命令来运行项目,并爬取所需数据: ``` scrapy crawl BossZhipin -o boss_zhipin.csv ``` 以上即为,使用Scrapy爬取Boss直聘数据的相关步骤和注意事项。
阅读全文

相关推荐

最新推荐

recommend-type

胃癌数据库的构建与临床应用的开题报告.docx

胃癌数据库的构建与临床应用的开题报告.docx
recommend-type

全面解析SOAP库包功能与应用

从给定的文件信息中,我们可以提取到的核心知识点主要集中在“SOAP”这一项技术上,由于提供的信息量有限,这里将尽可能详细地解释SOAP相关的知识。 首先,SOAP代表简单对象访问协议(Simple Object Access Protocol),是一种基于XML的消息传递协议。它主要用于在网络上不同应用程序之间的通信。SOAP定义了如何通过HTTP和XML格式来构造消息,并规定了消息的格式应遵循XML模式。这种消息格式使得两个不同平台或不同编程语言的应用程序之间能够进行松耦合的服务交互。 在分布式计算环境中,SOAP作为一种中间件技术,可以被看作是应用程序之间的一种远程过程调用(RPC)机制。它通常与Web服务结合使用,Web服务是使用特定标准实现的软件系统,它公开了可以通过网络(通常是互联网)访问的API。当客户端与服务端通过SOAP进行通信时,客户端可以调用服务端上特定的方法,而不需要关心该服务是如何实现的,或者是运行在什么类型的服务器上。 SOAP协议的特点主要包括: 1. **平台无关性**:SOAP基于XML,XML是一种跨平台的标准化数据格式,因此SOAP能够跨越不同的操作系统和编程语言平台进行通信。 2. **HTTP协议绑定**:虽然SOAP协议本身独立于传输协议,但是它通常与HTTP协议绑定,这使得SOAP能够利用HTTP的普及性和无需额外配置的优势。 3. **消息模型**:SOAP消息是交换信息的载体,遵循严格的结构,包含三个主要部分:信封(Envelope)、标题(Header)和正文(Body)。信封是消息的外壳,定义了消息的开始和结束;标题可以包含各种可选属性,如安全性信息;正文则是实际的消息内容。 4. **错误处理**:SOAP提供了详细的错误处理机制,可以通过错误码和错误信息来描述消息处理过程中的错误情况。 5. **安全性和事务支持**:SOAP协议可以集成各种安全性标准,如WS-Security,以确保消息传输过程中的安全性和完整性。同时,SOAP消息可以包含事务信息,以便于服务端处理事务性的业务逻辑。 在描述中提到的“所有库包”,这可能意味着包含了SOAP协议的实现、相关工具集或库等。由于信息不足,这里的“库包”具体指的是什么并不清楚,但可以理解为与SOAP相关的软件开发工具包(SDK)或框架,它们使得开发者可以更加方便地创建SOAP消息,处理SOAP请求和响应,以及实现Web服务。 至于“压缩包子文件的文件名称列表”中只有一个单词“soap”,这可能表明实际文件内容仅有一个与SOAP相关的文件,或者是一个压缩包文件的名称为“soap”。由于缺乏更详尽的文件列表,无法进一步分析其可能的内容。 综上所述,SOAP作为一种实现Web服务的技术标准,通过HTTP和XML实现系统间的通信。它支持跨平台、跨语言的服务调用,并具备强大的安全性和错误处理机制。在具体应用中,开发者可能需要用到与之相关的库包或工具集来开发和部署Web服务。
recommend-type

编程语言选择指南:为不同项目量身定制的编程语言策略

# 摘要 选择合适的编程语言对于软件项目的成功至关重要。本文首先探讨了编程语言选择的重要性,并对不同分类和特点的编程语言进行了详尽分析,重点介绍了静态与动态类型、解释型与编译型、面向对象与函数式编程语言的区别和应用场景。接着,文章根据项目需求详细讨论了如何选择适合的编程语言,包括功能需求、性能考量、开发效率和团队技能等关键因素。通过实践案例分析,本文进一步探讨了不同
recommend-type

手写vue2的插件vue-router

<think>我们正在手写一个简化版的vue-router插件,用于Vue2。主要步骤:1.定义一个类VueRouter,包含路由映射、当前路由状态等。2.实现install方法,用于Vue.use()安装插件,在install方法中:-混入beforeCreate生命周期钩子,在组件创建时初始化router。-全局注册router-view和router-link组件。3.实现路由映射:将路由配置转换为路径与组件的映射表。4.监听hashchange事件(或者使用history模式,这里以hash模式为例)来响应路由变化。5.实现router-view组件,根据当前路由渲染对应组件。6.实现
recommend-type

《软件工程:实践者的方法》第6版课件解析

根据提供的文件信息,我们可以推断出以下知识点: 1. 课程名称:“SOFTWARE ENGINEERING A practitioner's approach 6e”,表明这是关于软件工程的课程教材,第6版,针对实践者的教学方法。 2. 版本信息:由于标题中明确指出是第6版(6e),我们知道这是一系列教科书或课件的最新版本,这意味着内容已经根据最新的软件工程理论和实践进行了更新和改进。 3. 课程类型:课程是针对“practitioner”,即实践者的,这表明教材旨在教授学生如何将理论知识应用于实际工作中,注重解决实际问题和案例学习,可能包含大量的项目管理、需求分析、系统设计和测试等方面的内容。 4. 适用范围:文件描述中提到了“仅供校园内使用”,说明这个教材是专为教育机构内部学习而设计的,可能含有某些版权保护的内容,不允许未经授权的外部使用。 5. 标签:“SOFTWARE ENGINEERING A practitioner's approach 6e 软件工程”提供了关于这门课程的直接标签信息。标签不仅重复了课程名称,还强化了这是关于软件工程的知识。软件工程作为一门学科,涉及软件开发的整个生命周期,从需求收集、设计、编码、测试到维护和退役,因此课程内容可能涵盖了这些方面。 6. 文件命名:压缩包文件名“SftEng”是“SOFTWARE ENGINEERING”的缩写,表明该压缩包包含的是软件工程相关的教材或资料。 7. 关键知识点:根据标题和描述,我们可以推测课件中可能包含的知识点有: - 软件工程基础理论:包括软件工程的定义、目标、原则和软件开发生命周期的模型。 - 需求分析:学习如何获取、分析、记录和管理软件需求。 - 系统设计:涉及软件架构设计、数据库设计、界面设计等,以及如何将需求转化为设计文档。 - 实现与编码:包括编程语言的选择、代码编写规范、版本控制等。 - 测试:软件测试的原则、方法和测试用例的设计。 - 项目管理:时间管理、团队协作、风险管理、成本估算等与软件项目成功相关的管理活动。 - 质量保证:软件质量模型、质量度量和质量控制措施。 - 维护和演化:软件部署后如何进行持续维护、升级和系统退役。 - 软件工程的新兴领域:包括敏捷开发方法、DevOps、用户体验设计等现代软件开发趋势。 8. 版权和使用限制:由于是专供校园内使用的教材,课件可能包含版权声明和使用限制,要求用户在没有授权的情况下不得对外传播和用于商业用途。 综上所述,这门课程的课件是为校园内的学生和教职员工设计的,关于软件工程的全面教育材料,覆盖了理论知识和实践技巧,并且在版权方面有所限制。由于是最新版的教材,它很可能包含了最新的软件工程技术和方法论。
recommend-type

QUARTUS II 13.0全攻略:新手到专家的10个必备技能

# 摘要 本文旨在详细介绍QUARTUS II 13.0软件的使用,包括其安装、FPGA基础、项目设置、设计流程、高级功能应用
recommend-type

IllegalArgumentException.class

<think>首先,用户的问题是:“我想查找与Java中IllegalArgumentException类相关的信息请问Java IllegalArgumentExceptionclass usageand examples”。这翻译成英文是:“Iwant tofind informationrelated tothe IllegalArgumentExceptionclass inJava.Please provideusage andexamples ofJavaIllegalArgumentException class.” 根据系统级指令:-所有行内数学表达式必须使用$...$格式,
recommend-type

高效进程监控工具的探索与应用

根据提供的文件信息,我们可以推断出一系列与“监控进程东东”相关的知识点。这些信息暗示了该工具可能是一个用来监控操作系统中运行的进程的应用程序。以下是对这些知识点的详细说明: ### 标题知识点: 1. **监控进程的意义**:在IT行业中,监控进程是指持续跟踪系统中运行的进程状态和行为。进程监控对于系统管理员和开发人员来说至关重要,它可以帮助他们理解系统在特定时刻的行为,以及在出现问题时快速定位问题所在。 2. **“超级好用”的含义**:这通常意味着该监控工具具有用户友好的界面、高效的性能、详细的进程信息展示以及可能具备自动化问题检测与报告的功能。超级好用还可能意味着它易于安装、配置和使用,即使是对于非技术用户。 ### 描述知识点: 1. **重复强调“超级好用”**:这种表述强调该工具的易用性和高效性,暗示它可能采用了直观的用户界面设计,以及优化过的性能,能够减少系统负载,同时提供快速且精准的进程信息。 2. **监控进程工具的常见功能**:通常包括实时进程列表显示、进程资源使用情况监控(CPU、内存、磁盘I/O、网络活动等)、进程启动和结束的跟踪、进程关联性分析(例如父子关系)、以及可能的进程安全监控。 ### 标签知识点: 1. **“监控”标签**:这个标签明确指出了工具的主要用途,即监控。在IT领域,监控是指使用特定的软件或硬件工具来持续检测和记录系统、网络或应用的性能和可用性。 ### 压缩包子文件的文件名称列表知识点: 1. **procexp.chm**:这很可能是一个帮助文件(CHM是Microsoft Compiled HTML Help文件的扩展名),提供了监控进程工具的详细用户指南、使用说明、常见问题解答和功能介绍。CHM文件是将HTML页面、索引和其他资源编译成单一文件的格式,方便用户查阅。 2. **procexp.exe**:这指的是实际的监控进程应用程序的可执行文件。EXE文件是Windows操作系统下的可执行程序文件,用户通过双击它可以启动应用程序。该程序可能包含了用于监控进程的核心功能,比如列出所有运行中的进程,显示它们的详细信息,进行性能分析等。 3. **Eula.txt**:这是一个文本文件,通常包含了最终用户许可协议(End-User License Agreement,EULA)。EULA是供应商和用户之间的法律协议,规定了软件的合法使用条件,包括用户能做什么和不能做什么,以及版权和担保声明。 ### 综合知识点: - **监控进程工具选择标准**:一个优质的监控进程工具应当包括实时更新、多层次的系统信息(如进程树、模块、句柄等)、过滤和搜索功能、安全性高以及对用户行为影响小等特点。 - **监控进程工具在不同场景下的应用**:例如,在开发过程中,开发者可以使用进程监控工具来分析应用程序运行状况,进行性能调优;在安全领域,安全专家可以利用这些工具来发现可疑进程,防止恶意软件的运行。 - **监控进程工具的未来发展**:随着技术的不断进步,监控进程工具也在不断演化,可能会集成更多的智能分析技术,如机器学习算法来预测系统问题,或者提供云平台支持,使得跨区域的进程监控成为可能。 总体来说,上述文件信息所暗示的“超级好用的监控进程东东”可能是一个集多种功能于一身的进程监控工具,它能够帮助用户有效地管理和维护计算机系统,保障其稳定性和安全性。通过提供的文件列表,我们可以得知该工具附带详细的帮助文档,以及用户可能需要的许可协议,这体现了其对用户友好性和专业性的重视。
recommend-type

【Catalyst 9800无线控制器实战手册】:从故障排查到网络优化的必备技能

# 1. Catalyst 9800无线控制器概述 Catalyst 9800无线控制器是思科公司推出的针对企业级无线网络的管理设备,它负责管理和优化无线网络环境。作为一款无线局域网控制器,9800系列在设计上集成了先进的网络功
recommend-type

qcustemplot

<think>我们正在处理关于Qt QCustomPlot的使用问题。根据引用内容,QCustomPlot是一个用于Qt的图表库,支持多种图表类型和交互功能。用户询问的是使用问题,可能涉及安装、集成或基本用法。根据引用[1]和[2],安装QCustomPlot通常需要将头文件和源文件(qcustomplot.h和qcustomplot.cpp)复制到项目目录中,并在项目中包含它们。引用[4]提到,如果是代码方式添加,可以直接声明QCustomPlot对象,并且需要添加printsupport模块(因为QCustomPlot依赖于Qt的打印支持模块)。根据引用[3],用户可以通过在QtDesig