活动介绍

由于不清楚现有的环境是不是v2,该如何写import,满足兼容 import imageio.v2 as imageio 和 import imageio

时间: 2024-10-24 17:03:00 浏览: 99
如果你不确定当前环境是否支持`imageio.v2`,为了避免导入错误,你可以采用条件导入的方式。在Python中,可以使用`try-except`块来尝试导入`imageio.v2`,如果失败则退化到导入基本版本的`imageio`。以下是具体的代码示例: ```python from packaging import version # 尝试导入v2版本 try: import imageio # 检查版本 if hasattr(imageio, '__version__') and version.parse(imageio.__version__) >= version.parse('2'): import imageio.v2 as imageio # 如果是v2或更高版本,则使用这个别名 except ImportError: import imageio # 如果没有v2,直接导入基础库版本 ``` 在这个例子中,我们首先检查`imageio`模块是否有`__version__`属性,然后通过`version.parse()`函数比较版本号。如果版本大于等于2,就导入`imageio.v2`;否则,就只导入普通的`imageio`。
相关问题

DeprecationWarning: Starting with ImageIO v3 the behavior of this function will switch to that of iio.v3.imread. To keep the current behavior (and make this warning dissapear) use `import imageio.v2 as imageio` or call `imageio.v2.imread` directly.

该警告表示使用的是 ImageIO 库的 v2 版本,但是它将从 v3 版本开始更改函数的行为。为了避免这个警告,可以使用 `import imageio.v2 as imageio` 或直接调用 `imageio.v2.imread` 函数来保持当前行为。如果您想使用新的行为,可以使用 ImageIO 的 v3 版本。

DeprecationWarning: Starting with ImageIO v3 the behavior of this function will switch to that of iio.v3.imread. To keep the current behavior (and make this warning disappear) use `import imageio.v2 as imageio` or call `imageio.v2.imread` directly. input_img = imageio.imread('C:/Users/86182/Desktop/network_models/data_set/Plant_data/train/Apple_Black_rot/0ca16873-eeac-47e9-9a87-1859950daab7___JR_FrgE.S 2835.JPG')

这是一个警告(DeprecationWarning),通常是由于使用了不推荐使用的函数或功能而导致的。在这种情况下,你使用的是ImageIO的一个旧的读取图像的函数,但是在ImageIO的新版本中,该函数的行为已经发生了变化。警告建议使用新的函数或指定旧版本的函数来避免这个警告。 要解决这个问题,有几种方法可以尝试: 1. 使用警告中提供的建议,在导入ImageIO时使用`import imageio.v2 as imageio`而不是`import imageio`。 ```python import imageio.v2 as imageio input_img = imageio.imread('C:/Users/86182/Desktop/network_models/data_set/Plant_data/train/Apple_Black_rot/0ca16873-eeac-47e9-9a87-1859950daab7___JR_FrgE.S 2835.JPG') ``` 2. 直接调用ImageIO v2的函数。这可以通过使用`imageio.v2.imread()`函数来实现。 ```python import imageio input_img = imageio.v2.imread('C:/Users/86182/Desktop/network_models/data_set/Plant_data/train/Apple_Black_rot/0ca16873-eeac-47e9-9a87-1859950daab7___JR_FrgE.S 2835.JPG') ``` 这两种方法都可以避免这个警告,但是如果你使用的是ImageIO的其他功能,可能需要对代码进行更改以适应新版本的API。
阅读全文

相关推荐

# %% [markdown] # # CNN-VIT 视频动态手势识别 # # ### 隔空手势 # %% [markdown] # ### 下载数据 # %% # import os # import moxing as mox # if not os.path.exists('hand_gesture'): # mox.file.copy_parallel('obs://modelbox-course/hand_gesture', 'hand_gesture') # %% [markdown] # ### 准备环境 # %% # conda clean -i -y # %% # conda install cudatoolkit=11.3.1 cudnn=8.2.1 -y --override-channels --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main # %% # !pip install --upgrade pip # %% # !pip install tensorflow-gpu==2.5.0 imageio # %% # !pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple # %% # conda install tqdm matplotlib==3.5.3 # %% [markdown] # 运行完成请务必点击左上角Kernel->Restart Kernel重启kernel # %% [markdown] # ### 模型训练 # %% import cv2 import glob import numpy as np from tqdm import tqdm import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt %matplotlib inline # %% [markdown] # 打印TensorFlow版本并显示可用GPU # %% print('Tensorflow version: {}'.format(tf.__version__)) print('GPU available: {}'.format(tf.config.list_physical_devices('GPU'))) # %% [markdown] # 创建视频输入管道获取视频类别标签 # %% videos = glob.glob('hand_gesture/*.mp4') np.random.shuffle(videos) labels = [int(video.split('_')[-2]) for video in videos] videos[:5], len(videos), labels[:5], len(videos) # %% [markdown] # 显示数据分布情况 # %% from collections import Counter counts = Counter(labels) print(counts) plt.figure(figsize=(8, 4)) plt.bar(counts.keys(), counts.values()) plt.xlabel('Class label') plt.ylabel('Number of samples') plt.title('Class distribution in videos') plt.show() # %% [markdown] # 图像中心裁剪 # %% def crop_center_square(img): h, w = img.shape[:2] square_w = min(h, w) start_x = w // 2 - square_w // 2 end_x = start_x + square_w start_y = h // 2 - square_w // 2 end_y = start_y + square_w result = img[start_y:end_y, start_x:end_x] return result # %% MAX_SEQUENCE_LENGTH = 40 IMG_SIZE = 299 NUM_FEATURES = 1536 # %% [markdown] # 视频抽帧预处理 # %% def load_video(file_name): cap = cv2.VideoCapture(file_name) # 每隔多少帧抽取一次 frame_interval = 4 frames = [] count = 0 while True: ret, frame = cap.read() if not ret: break # 每隔frame_interval帧保存一次 if count % frame_interval == 0: # 中心裁剪 frame = crop_center_square(frame) # 缩放 frame = cv2.resize(frame, (IMG_SIZE, IMG_SIZE)) # BGR -> RGB [0,1,2] -> [2,1,0] frame = frame[:, :, [2, 1, 0]] frames.append(frame) count += 1 return np.array(frames) # %% [markdown] # 显示视频 # %% import random import imageio from IPython.display import Image label_to_name = {0:'无效手势', 1:'上滑', 2:'下滑', 3:'左滑', 4:'右滑', 5:'打开', 6:'关闭', 7:'放大', 8:'缩小'} print(label_to_name.get(labels[0])) frames = load_video(videos[0]) frames = frames[:MAX_SEQUENCE_LENGTH].astype(np.uint8) imageio.mimsave('test.gif', frames, durations=10) display(Image(open('test.gif', 'rb').read())) frames.shape # %% [markdown] # #### InceptionResNetV2 # %% [markdown] # 创建图像特征提取器 # %% def get_feature_extractor(): feature_extractor = keras.applications.inception_resnet_v2.InceptionResNetV2( weights = 'imagenet', include_top = False, pooling = 'avg', input_shape = (IMG_SIZE, IMG_SIZE, 3) ) preprocess_input = keras.applications.inception_resnet_v2.preprocess_input inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3)) preprocessed = preprocess_input(inputs) outputs = feature_extractor(preprocessed) model = keras.Model(inputs, outputs, name = 'feature_extractor') return model # %% feature_extractor = get_feature_extractor() feature_extractor.summary() # %% # from tensorflow.keras.applications import InceptionResNetV2 # weights_path = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5' # model = InceptionResNetV2(weights=None, include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3)) # model.load_weights(weights_path) # feature_extractor = model # feature_extractor.summary() # %% [markdown] # 提取视频图像特征 # %% def load_data(videos, labels): video_features = [] for video in tqdm(videos): frames = load_video(video) counts = len(frames) # 如果帧数小于MAX_SEQUENCE_LENGTH if counts < MAX_SEQUENCE_LENGTH: # 补白 diff = MAX_SEQUENCE_LENGTH - counts # 创建全0的numpy数组 padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3)) # 数组拼接 frames = np.concatenate((frames, padding)) # 获取前MAX_SEQUENCE_LENGTH帧画面 frames = frames[:MAX_SEQUENCE_LENGTH, :] # 批量提取特征 video_feature = feature_extractor.predict(frames) video_features.append(video_feature) return np.array(video_features), np.array(labels) # %% video_features, classes = load_data(videos, labels) video_features.shape, classes.shape # %% [markdown] # #### Dataset # %% batch_size = 16 dataset = tf.data.Dataset.from_tensor_slices((video_features, classes)) dataset = dataset.shuffle(len(videos)) test_count = int(len(videos) * 0.2) train_count = len(videos) - test_count dataset_train = dataset.skip(test_count).cache().repeat() dataset_test = dataset.take(test_count).cache().repeat() train_dataset = dataset_train.shuffle(train_count).batch(batch_size) test_dataset = dataset_test.shuffle(test_count).batch(batch_size) train_dataset, train_count, test_dataset, test_count # %% [markdown] # #### VIT Model # %% # 位置编码 class PositionalEmbedding(layers.Layer): def __init__(self, seq_length, output_dim): super().__init__() # 构造从0~MAX_SEQUENCE_LENGTH的列表 self.positions = tf.range(0, limit=MAX_SEQUENCE_LENGTH) self.positional_embedding = layers.Embedding(input_dim=seq_length, output_dim=output_dim) def call(self,x): # 位置编码 positions_embedding = self.positional_embedding(self.positions) # 输入相加 return x + positions_embedding # %% # 编码器 class TransformerEncoder(layers.Layer): def __init__(self, num_heads, embed_dim): super().__init__() self.p_embedding = PositionalEmbedding(MAX_SEQUENCE_LENGTH, NUM_FEATURES) self.attention = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim, dropout=0.1) self.layernorm = layers.LayerNormalization() def call(self,x): # positional embedding positional_embedding = self.p_embedding(x) # self attention attention_out = self.attention( query = positional_embedding, value = positional_embedding, key = positional_embedding, attention_mask = None ) # layer norm with residual connection output = self.layernorm(positional_embedding + attention_out) return output # %% def video_cls_model(class_vocab): # 类别数量 classes_num = len(class_vocab) # 定义模型 model = keras.Sequential([ layers.InputLayer(input_shape=(MAX_SEQUENCE_LENGTH, NUM_FEATURES)), TransformerEncoder(2, NUM_FEATURES), layers.GlobalMaxPooling1D(), layers.Dropout(0.1), layers.Dense(classes_num, activation="softmax") ]) # 编译模型 model.compile(optimizer = keras.optimizers.Adam(1e-5), loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False), metrics = ['accuracy'] ) return model # %% # 模型实例化 model = video_cls_model(np.unique(labels)) # 打印模型结构 model.summary() # %% from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau # 保存检查点 checkpoint = ModelCheckpoint(filepath='best.h5', monitor='val_loss', save_weights_only=True, save_best_only=True, verbose=1, mode='min') # 提前终止 earlyStopping = EarlyStopping(monitor='loss', patience=50, mode='min', baseline=None) # 减少learning rate rlp = ReduceLROnPlateau(monitor='loss', factor=0.7, patience=30, min_lr=1e-15, mode='min', verbose=1) # %% [markdown] # #### 开始训练 # %% history = model.fit(train_dataset, epochs = 1000, steps_per_epoch = train_count // batch_size, validation_steps = test_count // batch_size, validation_data = test_dataset, callbacks = [checkpoint, earlyStopping, rlp]) # %% [markdown] # #### 绘制结果 # %% plt.plot(history.epoch, history.history['loss'], 'r', label='loss') plt.plot(history.epoch, history.history['val_loss'], 'g--', label='val_loss') plt.title('VIT Model') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() # %% plt.plot(history.epoch, history.history['accuracy'], 'r', label='acc') plt.plot(history.epoch, history.history['val_accuracy'], 'g--', label='val_acc') plt.title('VIT Model') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() # %% [markdown] # 加载训练最优权重 # %% model.load_weights('best.h5') # %% [markdown] # 模型评估 # %% model.evaluate(dataset.batch(batch_size)) # %% [markdown] # 保存模型 # %% model.save('saved_model') # %% [markdown] # ### 手势识别 # %% import random # 加载模型 model = tf.keras.models.load_model('saved_model') # 类别标签 label_to_name = {0:'无效手势', 1:'上滑', 2:'下滑', 3:'左滑', 4:'右滑', 5:'打开', 6:'关闭', 7:'放大', 8:'缩小'} # %% # 获取视频特征 def getVideoFeat(frames): frames_count = len(frames) # 如果帧数小于MAX_SEQUENCE_LENGTH if frames_count < MAX_SEQUENCE_LENGTH: # 补白 diff = MAX_SEQUENCE_LENGTH - frames_count # 创建全0的numpy数组 padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3)) # 数组拼接 frames = np.concatenate((frames, padding)) # 取前MAX_SEQ_LENGTH帧 frames = frames[:MAX_SEQUENCE_LENGTH,:] # 计算视频特征 N, 1536 video_feat = feature_extractor.predict(frames) return video_feat # %% # 视频预测 def testVideo(): test_file = random.sample(videos, 1)[0] label = test_file.split('_')[-2] print('文件名:{}'.format(test_file) ) print('真实类别:{}'.format(label_to_name.get(int(label))) ) # 读取视频每一帧 frames = load_video(test_file) # 挑选前帧MAX_SEQUENCE_LENGTH显示 frames = frames[:MAX_SEQUENCE_LENGTH].astype(np.uint8) # 保存为GIF imageio.mimsave('animation.gif', frames, duration=10) # 获取特征 feat = getVideoFeat(frames) # 模型推理 prob = model.predict(tf.expand_dims(feat, axis=0))[0] print('预测类别:') for i in np.argsort(prob)[::-1][:5]: print('{}: {}%'.format(label_to_name[i], round(prob[i]*100, 2))) return display(Image(open('animation.gif', 'rb').read())) # %% [markdown] # 视频推理 # %% for i in range(20): testVideo() 添加usb视频推理

import os import sys import math import heapq import time import numpy as np import matplotlib.pyplot as plt import scipy.spatial as kd import imageio.v2 as imageio import pandas as pd import openpyxl sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../MotionPlanning/") import astar as astar import reeds_shepp as rs class C: # Parameter config PI = np.pi XY_RESO = 2.0 # [m] YAW_RESO = np.deg2rad(15.0) # [rad] GOAL_YAW_ERROR = np.deg2rad(3.0) # [rad] MOVE_STEP = 0.2 # [m] path interporate resolution N_STEER = 20.0 # number of steer command COLLISION_CHECK_STEP = 10 # skip number for collision check EXTEND_AREA = 5.0 # [m] map extend length GEAR_COST = 100.0 # switch back penalty cost BACKWARD_COST = 5.0 # backward penalty cost STEER_CHANGE_COST = 5.0 # steer angle change penalty cost STEER_ANGLE_COST = 1.0 # steer angle penalty cost SCISSORS_COST = 200.0 # scissors cost H_COST = 10.0 # Heuristic cost W = 3.75 # [m] width of vehicle WB = 4.5 # [m] wheel base: rear to front steer WD = 2.1 # [m] distance between left-right wheels RF = 7.23 # [m] distance from rear to vehicle front end of vehicle RB = 0.77 # [m] distance from rear to vehicle back end of vehicle RTR = 15.596 # [m] rear to trailer wheel RTF = 4.35 # [m] distance from rear to vehicle front end of trailer RTB = 35.15 # [m] distance from rear to vehicle back end of trailer TR = 0.5 # [m] tyre radius TW = 0.285 # [m] tyre width TR1 = 0.447 # [m] tyre radius TW1 = 0.283 # [m] tyre width MAX_STEER = 0.52 # [rad] maximum steering angle TR2 = 0.565 TW2 = 0.419+0.8636 TR3 = 0.343 TW3 = 0.1968+0.4064 TR4 = 0.536 TW4 = 0.385 # 拖车参数 HINGE_DISTANCE = 1.45 # 铰接点距离牵引车后轴的距离 HINGE_DISTANCE_Front = 4.09 # 铰接点距离水平部分前端的距离 HINGE_DISTANCE_RW = 15.596 # 铰接点距离主起的距离 DISTANCE_MAIN_GEAR = 5.7146 # 主起的距离 TRAILER_VERTICAL_LENGTH = 16.65*2 # 垂直部分的总长度 TRAILER_VERTICAL_WIDTH = 5.0 # 垂直部分的宽度 TRAILER_HORIZONTAL_LENGTH = 39.5 # 水平部分的长度 TRAILER_HORIZONTAL_WIDTH = 3.759 # 水平部分的宽度 Length_hinge_end = TRAILER_HORIZONTAL_LENGTH - HINGE_DISTANCE_Front Length_hinge_front = HINGE_DISTANCE_Front Length_rear_main_gear = HINGE_DISTANCE_RW class Node: def __init__(self, xind, yind, yawind, direction, x, y, yaw, yawt, directions, steer, cost, pind): self.xind = xind self.yind = yind self.yawind = yawind self.direction = direction self.x = x self.y = y self.yaw = yaw self.yawt = yawt self.directions = directions self.steer = steer self.cost = cost self.pind = pind class Para: def __init__(self, minx, miny, minyaw, minyawt, maxx, maxy, maxyaw, maxyawt, xw, yw, yaww, yawtw, xyreso, yawreso, ox, oy, kdtree): self.minx = minx self.miny = miny self.minyaw = minyaw self.minyawt = minyawt self.maxx = maxx self.maxy = maxy self.maxyaw = maxyaw self.maxyawt = maxyawt self.xw = xw self.yw = yw self.yaww = yaww self.yawtw = yawtw self.xyreso = xyreso self.yawreso = yawreso self.ox = ox self.oy = oy self.kdtree = kdtree class Path: def __init__(self, x, y, yaw, yawt, direction, cost): self.x = x self.y = y self.yaw = yaw self.yawt = yawt self.direction = direction self.cost = cost class QueuePrior: def __init__(self): self.queue = [] def empty(self): return len(self.queue) == 0 # if Q is empty def put(self, item, priority): heapq.heappush(self.queue, (priority, item)) # reorder x using priority def get(self): return heapq.heappop(self.queue)[1] # pop out element with smallest priority def hybrid_astar_planning(sx, sy, syaw, syawt, gx, gy, gyaw, gyawt, ox, oy, xyreso, yawreso): """ planning hybrid A* path. :param sx: starting node x position [m] :param sy: starting node y position [m] :param syaw: starting node yaw angle [rad] :param syawt: starting node trailer yaw angle [rad] :param gx: goal node x position [m] :param gy: goal node y position [m] :param gyaw: goal node yaw angle [rad] :param gyawt: goal node trailer yaw angle [rad] :param ox: obstacle x positions [m] :param oy: obstacle y positions [m] :param xyreso: grid resolution [m] :param yawreso: yaw resolution [m] :return: hybrid A* path """ sxr, syr = round(sx / xyreso), round(sy / xyreso) gxr, gyr = round(gx / xyreso), round(gy / xyreso) syawr = round(rs.pi_2_pi(syaw) / yawreso) gyawr = round(rs.pi_2_pi(gyaw) / yawreso) nstart = Node(sxr, syr, syawr, 1, [sx], [sy], [syaw], [syawt], [1], 0.0, 0.0, -1) ngoal = Node(gxr, gyr, gyawr, 1, [gx], [gy], [gyaw], [gyawt], [1], 0.0, 0.0, -1) kdtree = kd.KDTree([[x, y] for x, y in zip(ox, oy)]) P = calc_parameters(ox, oy, xyreso, yawreso, kdtree) hmap = astar.calc_holonomic_heuristic_with_obstacle(ngoal, P.ox, P.oy, P.xyreso, 1.0) steer_set, direc_set = calc_motion_set() open_set, closed_set = {calc_index(nstart, P): nstart}, {} qp = QueuePrior() qp.put(calc_index(nstart, P), calc_hybrid_cost(nstart, hmap, P)) while True: if not open_set: return None ind = qp.get() n_curr = open_set[ind] closed_set[ind] = n_curr open_set.pop(ind) update, fpath = update_node_with_analystic_expantion(n_curr, ngoal, gyawt, P) if update: fnode = fpath break yawt0 = n_curr.yawt[0] for i in range(len(steer_set)): node = calc_next_node(n_curr, ind, steer_set[i], direc_set[i], P) if not is_index_ok(node, yawt0, P): continue node_ind = calc_index(node, P) if node_ind in closed_set: continue if node_ind not in open_set: open_set[node_ind] = node qp.put(node_ind, calc_hybrid_cost(node, hmap, P)) else: if open_set[node_ind].cost > node.cost: open_set[node_ind] = node print("final expand node: ", len(open_set) + len(closed_set)) return extract_path(closed_set, fnode, nstart) def extract_path(closed, ngoal, nstart): rx, ry, ryaw, ryawt, direc = [], [], [], [], [] cost = 0.0 node = ngoal while True: rx += node.x[::-1] ry += node.y[::-1] ryaw += node.yaw[::-1] ryawt += node.yawt[::-1] direc += node.directions[::-1] cost += node.cost if is_same_grid(node, nstart): break node = closed[node.pind] rx = rx[::-1] ry = ry[::-1] ryaw = ryaw[::-1] ryawt = ryawt[::-1] direc = direc[::-1] direc[0] = direc[1] path = Path(rx, ry, ryaw, ryawt, direc, cost) return path def update_node_with_analystic_expantion(n_curr, ngoal, gyawt, P): path = analystic_expantion(n_curr, ngoal, P) # rs path: n -> ngoal if not path: return False, None steps = [C.MOVE_STEP * d for d in path.directions] yawt = calc_trailer_yaw(path.yaw, n_curr.yawt[-1], steps) if abs(rs.pi_2_pi(yawt[-1] - gyawt)) >= C.GOAL_YAW_ERROR: return False, None fx = path.x[1:-1] fy = path.y[1:-1] fyaw = path.yaw[1:-1] fd = [] for d in path.directions[1:-1]: if d >= 0: fd.append(1.0) else: fd.append(-1.0) # fd = path.directions[1:-1] fcost = n_curr.cost + calc_rs_path_cost(path, yawt) fpind = calc_index(n_curr, P) fyawt = yawt[1:-1] fsteer = 0.0 fpath = Node(n_curr.xind, n_curr.yind, n_curr.yawind, n_curr.direction, fx, fy, fyaw, fyawt, fd, fsteer, fcost, fpind) return True, fpath def analystic_expantion(node, ngoal, P): sx, sy, syaw = node.x[-1], node.y[-1], node.yaw[-1] gx, gy, gyaw = ngoal.x[-1], ngoal.y[-1], ngoal.yaw[-1] maxc = math.tan(C.MAX_STEER) / C.WB paths = rs.calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=C.MOVE_STEP) if not paths: return None pq = QueuePrior() for path in paths: steps = [C.MOVE_STEP * d for d in path.directions] yawt = calc_trailer_yaw(path.yaw, node.yawt[-1], steps) pq.put(path, calc_rs_path_cost(path, yawt)) # while not pq.empty(): path = pq.get() steps = [C.MOVE_STEP * d for d in path.directions] yawt = calc_trailer_yaw(path.yaw, node.yawt[-1], steps) ind = range(0, len(path.x), C.COLLISION_CHECK_STEP) pathx = [path.x[k] for k in ind] pathy = [path.y[k] for k in ind] pathyaw = [path.yaw[k] for k in ind] pathyawt = [yawt[k] for k in ind] if not is_collision(pathx, pathy, pathyaw, pathyawt, P): return path return None def calc_next_node(n, ind, u, d, P): step = C.XY_RESO * 2.0 nlist = math.ceil(step / C.MOVE_STEP) xlist = [n.x[-1] + d * C.MOVE_STEP * math.cos(n.yaw[-1])] ylist = [n.y[-1] + d * C.MOVE_STEP * math.sin(n.yaw[-1])] yawlist = [rs.pi_2_pi(n.yaw[-1] + d * C.MOVE_STEP / C.WB * math.tan(u))] yawtlist = [rs.pi_2_pi(n.yawt[-1] + d * C.MOVE_STEP / C.RTR * math.sin(n.yaw[-1] - n.yawt[-1]))] for i in range(nlist - 1): xlist.append(xlist[i] + d * C.MOVE_STEP * math.cos(yawlist[i])) ylist.append(ylist[i] + d * C.MOVE_STEP * math.sin(yawlist[i])) yawlist.append(rs.pi_2_pi(yawlist[i] + d * C.MOVE_STEP / C.WB * math.tan(u))) yawtlist.append(rs.pi_2_pi(yawtlist[i] + d * C.MOVE_STEP / C.RTR * math.sin(yawlist[i] - yawtlist[i]))) xind = round(xlist[-1] / P.xyreso) yind = round(ylist[-1] / P.xyreso) yawind = round(yawlist[-1] / P.yawreso) cost = 0.0 if d > 0: direction = 1.0 cost += abs(step) else: direction = -1.0 cost += abs(step) * C.BACKWARD_COST if direction != n.direction: # switch back penalty cost += C.GEAR_COST cost += C.STEER_ANGLE_COST * abs(u) # steer penalyty cost += C.STEER_CHANGE_COST * abs(n.steer - u) # steer change penalty cost += C.SCISSORS_COST * sum([abs(rs.pi_2_pi(x - y)) for x, y in zip(yawlist, yawtlist)]) # jacknif cost cost = n.cost + cost directions = [direction for _ in range(len(xlist))] node = Node(xind, yind, yawind, direction, xlist, ylist, yawlist, yawtlist, directions, u, cost, ind) return node def is_collision(x, y, yaw, yawt, P): for ix, iy, iyaw, iyawt in zip(x, y, yaw, yawt): d = 1 deltal = (C.RF - C.RB) / 2.0 rc = (C.RF + C.RB) / 2.0 + d cx = ix + deltal * math.cos(iyaw) cy = iy + deltal * math.sin(iyaw) ids = P.kdtree.query_ball_point([cx, cy], rc) if ids: for i in ids: xo = P.ox[i] - cx yo = P.oy[i] - cy dx_car = xo * math.cos(iyaw) + yo * math.sin(iyaw) dy_car = -xo * math.sin(iyaw) + yo * math.cos(iyaw) if abs(dx_car) <= rc and \ abs(dy_car) <= C.W / 2.0 + d: return True d1 = 7.5 deltal = C.HINGE_DISTANCE_RW rt = C.TRAILER_VERTICAL_LENGTH / 2.0 + d1 ctx = ix + C.HINGE_DISTANCE * math.cos(iyaw) - deltal * math.cos(iyawt) cty = iy + C.HINGE_DISTANCE * math.sin(iyaw) - deltal * math.sin(iyawt) idst = P.kdtree.query_ball_point([ctx, cty], rt) if idst: for i in idst: xot = P.ox[i] - ctx yot = P.oy[i] - cty dx_trail = xot * math.cos(iyawt) + yot * math.sin(iyawt) dy_trail = -xot * math.sin(iyawt) + yot * math.cos(iyawt) if abs(dx_trail) <= rt and \ abs(dy_trail) <= rt: return True # 添加横摆角差值的判断 yaw_diff = abs(rs.pi_2_pi(iyaw - iyawt)) if np.rad2deg(yaw_diff) > 70: return True return False def calc_trailer_yaw(yaw, yawt0, steps): yawt = [0.0 for _ in range(len(yaw))] yawt[0] = yawt0 for i in range(1, len(yaw)): yawt[i] += yawt[i - 1] + steps[i - 1] / C.RTR * math.sin(yaw[i - 1] - yawt[i - 1]) return yawt def trailer_motion_model(x, y, yaw, yawt, D, d, L, delta): x += D * math.cos(yaw) y += D * math.sin(yaw) yaw += D / L * math.tan(delta) yawt += D / d * math.sin(yaw - yawt) return x, y, yaw, yawt def calc_rs_path_cost(rspath, yawt): cost = 0.0 for lr in rspath.lengths: if lr >= 0: cost += 1 else: cost += abs(lr) * C.BACKWARD_COST for i in range(len(rspath.lengths) - 1): if rspath.lengths[i] * rspath.lengths[i + 1] < 0.0: cost += C.GEAR_COST for ctype in rspath.ctypes: if ctype != "S": cost += C.STEER_ANGLE_COST * abs(C.MAX_STEER) nctypes = len(rspath.ctypes) ulist = [0.0 for _ in range(nctypes)] for i in range(nctypes): if rspath.ctypes[i] == "R": ulist[i] = -C.MAX_STEER elif rspath.ctypes[i] == "WB": ulist[i] = C.MAX_STEER for i in range(nctypes - 1): cost += C.STEER_CHANGE_COST * abs(ulist[i + 1] - ulist[i]) cost += C.SCISSORS_COST * sum([abs(rs.pi_2_pi(x - y)) for x, y in zip(rspath.yaw, yawt)]) return cost def calc_motion_set(): s = [i for i in np.arange(C.MAX_STEER / C.N_STEER, C.MAX_STEER, C.MAX_STEER / C.N_STEER)] steer = [0.0] + s + [-i for i in s] direc = [1.0 for _ in range(len(steer))] + [-1.0 for _ in range(len(steer))] steer = steer + steer return steer, direc def calc_hybrid_cost(node, hmap, P): cost = node.cost + \ C.H_COST * hmap[node.xind - P.minx][node.yind - P.miny] return cost def calc_index(node, P): ind = (node.yawind - P.minyaw) * P.xw * P.yw + \ (node.yind - P.miny) * P.xw + \ (node.xind - P.minx) yawt_ind = round(node.yawt[-1] / P.yawreso) ind += (yawt_ind - P.minyawt) * P.xw * P.yw * P.yaww return ind def is_index_ok(node, yawt0, P): if node.xind <= P.minx or \ node.xind >= P.maxx or \ node.yind <= P.miny or \ node.yind >= P.maxy: return False steps = [C.MOVE_STEP * d for d in node.directions] yawt = calc_trailer_yaw(node.yaw, yawt0, steps) ind = range(0, len(node.x), C.COLLISION_CHECK_STEP) x = [node.x[k] for k in ind] y = [node.y[k] for k in ind] yaw = [node.yaw[k] for k in ind] yawt = [yawt[k] for k in ind] if is_collision(x, y, yaw, yawt, P): return False return True def calc_parameters(ox, oy, xyreso, yawreso, kdtree): minxm = min(ox) - C.EXTEND_AREA minym = min(oy) - C.EXTEND_AREA maxxm = max(ox) + C.EXTEND_AREA maxym = max(oy) + C.EXTEND_AREA ox.append(minxm) oy.append(minym) ox.append(maxxm) oy.append(maxym) minx = round(minxm / xyreso) miny = round(minym / xyreso) maxx = round(maxxm / xyreso) maxy = round(maxym / xyreso) xw, yw = maxx - minx, maxy - miny minyaw = round(-C.PI / yawreso) - 1 maxyaw = round(C.PI / yawreso) yaww = maxyaw - minyaw minyawt, maxyawt, yawtw = minyaw, maxyaw, yaww P = Para(minx, miny, minyaw, minyawt, maxx, maxy, maxyaw, maxyawt, xw, yw, yaww, yawtw, xyreso, yawreso, ox, oy, kdtree) return P def is_same_grid(node1, node2): if node1.xind != node2.xind or \ node1.yind != node2.yind or \ node1.yawind != node2.yawind: return False return True def draw_arrow(x, y, yaw, length, car_color): plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), head_length=0.5, head_width=0.5, color=car_color) def draw_model(x, y, yaw, yawt, steer, car_color='blue', trailer_color='green'): car = np.array([[-C.RB, -C.RB, C.RF, C.RF, -C.RB], [C.W / 2, -C.W / 2, -C.W / 2, C.W / 2, C.W / 2]]) # 定义车轮的几何形状 wheel1 = np.array([[-C.TR1, -C.TR1, C.TR1, C.TR1, -C.TR1], [C.TW1 / 2, -C.TW1 / 2, -C.TW1 / 2, C.TW1 / 2, C.TW1 / 2]]) wheel3 = np.array([[-C.TR3, -C.TR3, C.TR3, C.TR3, -C.TR3], [C.TW3 / 2, -C.TW3 / 2, -C.TW3 / 2, C.TW3 / 2, C.TW3 / 2]]) wheel2 = np.array([[-C.TR2, -C.TR2, C.TR2, C.TR2, -C.TR2], [C.TW2 / 2, -C.TW2 / 2, -C.TW2 / 2, C.TW2 / 2, C.TW2 / 2]]) wheel4 = np.array([[-C.TR4, -C.TR4, C.TR4, C.TR4, -C.TR4], [C.TW4 / 2, -C.TW4 / 2, -C.TW4 / 2, C.TW4 / 2, C.TW4 / 2]]) # 复制车轮的几何形状 rlWheel = wheel4.copy() rrWheel = wheel4.copy() frWheel = wheel1.copy() flWheel = wheel1.copy() # 定义拖车的两个矩形 # 拖车主体(水平部分) trail_horizontal = np.array([[-C.Length_hinge_end, -C.Length_hinge_end, C.Length_hinge_front, C.Length_hinge_front, -C.Length_hinge_end], [-C.TRAILER_HORIZONTAL_WIDTH / 2, C.TRAILER_HORIZONTAL_WIDTH / 2, C.TRAILER_HORIZONTAL_WIDTH / 2, -C.TRAILER_HORIZONTAL_WIDTH / 2, -C.TRAILER_HORIZONTAL_WIDTH / 2]]) # 拖车垂直部分 trail_vertical = np.array([[-C.Length_rear_main_gear + C.TRAILER_VERTICAL_WIDTH / 2, -C.Length_rear_main_gear + C.TRAILER_VERTICAL_WIDTH / 2, -C.Length_rear_main_gear - C.TRAILER_VERTICAL_WIDTH / 2, -C.Length_rear_main_gear - C.TRAILER_VERTICAL_WIDTH / 2, -C.Length_rear_main_gear + C.TRAILER_VERTICAL_WIDTH / 2], [-C.TRAILER_VERTICAL_LENGTH / 2, C.TRAILER_VERTICAL_LENGTH / 2, C.TRAILER_VERTICAL_LENGTH / 2, -C.TRAILER_VERTICAL_LENGTH / 2, -C.TRAILER_VERTICAL_LENGTH / 2]]) # 复制拖车轮 rltWheel = wheel2.copy() rrtWheel = wheel2.copy() rltWheel[0, :] -= C.HINGE_DISTANCE_RW rltWheel[1, :] += C.DISTANCE_MAIN_GEAR / 2 rrtWheel[0, :] -= C.HINGE_DISTANCE_RW rrtWheel[1, :] += - C.DISTANCE_MAIN_GEAR / 2 fltWheel = wheel3.copy() # 定义旋转矩阵 Rot1 = np.array([[math.cos(yaw), -math.sin(yaw)], [math.sin(yaw), math.cos(yaw)]]) Rot2 = np.array([[math.cos(steer), -math.sin(steer)], [math.sin(steer), math.cos(steer)]]) Rot3 = np.array([[math.cos(yawt), -math.sin(yawt)], [math.sin(yawt), math.cos(yawt)]]) # 旋转前轮 frWheel = np.dot(Rot2, frWheel) flWheel = np.dot(Rot2, flWheel) # 调整车轮的位置 frWheel += np.array([[C.WB], [-C.WD / 2]]) flWheel += np.array([[C.WB], [C.WD / 2]]) rrWheel[1, :] -= C.WD / 2 rlWheel[1, :] += C.WD / 2 # 旋转车轮和车身 frWheel = np.dot(Rot1, frWheel) flWheel = np.dot(Rot1, flWheel) rrWheel = np.dot(Rot1, rrWheel) rlWheel = np.dot(Rot1, rlWheel) car = np.dot(Rot1, car) hinge_point = np.array([C.HINGE_DISTANCE * math.cos(yaw), C.HINGE_DISTANCE * math.sin(yaw)]) # 调整拖车轮和拖车的位置 fltWheel = np.dot(Rot3, fltWheel) rltWheel = np.dot(Rot3, rltWheel) rrtWheel = np.dot(Rot3, rrtWheel) fltWheel[0, :] += hinge_point[0] fltWheel[1, :] += hinge_point[1] rltWheel[0, :] += hinge_point[0] rltWheel[1, :] += hinge_point[1] rrtWheel[0, :] += hinge_point[0] rrtWheel[1, :] += hinge_point[1] # 旋转拖车主体 trail_horizontal = np.dot(Rot3, trail_horizontal) trail_horizontal[0, :] += hinge_point[0] trail_horizontal[1, :] += hinge_point[1] # 旋转拖车垂直部分90度 trail_vertical = np.dot(Rot3, trail_vertical) trail_vertical[0, :] += hinge_point[0] trail_vertical[1, :] += hinge_point[1] # 平移所有部件到车辆中心 frWheel += np.array([[x], [y]]) flWheel += np.array([[x], [y]]) rrWheel += np.array([[x], [y]]) rlWheel += np.array([[x], [y]]) rrtWheel += np.array([[x], [y]]) rltWheel += np.array([[x], [y]]) fltWheel += np.array([[x], [y]]) car += np.array([[x], [y]]) trail_horizontal += np.array([[x], [y]]) trail_vertical += np.array([[x], [y]]) # 绘制车辆和拖车 plt.plot(car[0, :], car[1, :], car_color) plt.plot(trail_horizontal[0, :], trail_horizontal[1, :], trailer_color) plt.plot(trail_vertical[0, :], trail_vertical[1, :], trailer_color) plt.plot(frWheel[0, :], frWheel[1, :], car_color) plt.plot(rrWheel[0, :], rrWheel[1, :], car_color) plt.plot(flWheel[0, :], flWheel[1, :], car_color) plt.plot(rlWheel[0, :], rlWheel[1, :], car_color) plt.plot(rrtWheel[0, :], rrtWheel[1, :], trailer_color) plt.plot(rltWheel[0, :], rltWheel[1, :], trailer_color) plt.plot(fltWheel[0, :], fltWheel[1, :], trailer_color) draw_arrow(x, y, yaw, C.WB * 0.8, car_color) def design_obstacles(): ox, oy = [], [] for i in range(40, 150): ox.append(i) oy.append(70) for i in range(40, 150): ox.append(i) oy.append(10) for j in range(-100, 160): ox.append(-50) oy.append(j) for j in range(-100, 10): ox.append(40) oy.append(j) for j in range(70, 160): ox.append(40) oy.append(j) for j in range(80, 90): ox.append(-20) oy.append(j) for j in range(80, 90): ox.append(-30) oy.append(j) for i in range(-30, -20): ox.append(i) oy.append(80) for i in range(-30, -20): ox.append(i) oy.append(90) return ox, oy def test(x, y, yaw, yawt, ox, oy): d = 0.5 deltal = (C.RTF - C.RTB) / 2.0 rt = (C.RTF + C.RTB) / 2.0 + d ctx = x + deltal * math.cos(yawt) cty = y + deltal * math.sin(yawt) deltal = (C.RF - C.RB) / 2.0 rc = (C.RF + C.RB) / 2.0 + d xot = ox - ctx yot = oy - cty dx_trail = xot * math.cos(yawt) + yot * math.sin(yawt) dy_trail = -xot * math.sin(yawt) + yot * math.cos(yawt) if abs(dx_trail) <= rt - d and \ abs(dy_trail) <= C.W / 2.0: print("test1: Collision") else: print("test1: No collision") # test 2 cx = x + deltal * math.cos(yaw) cy = y + deltal * math.sin(yaw) xo = ox - cx yo = oy - cy dx_car = xo * math.cos(yaw) + yo * math.sin(yaw) dy_car = -xo * math.sin(yaw) + yo * math.cos(yaw) if abs(dx_car) <= rc - d and \ abs(dy_car) <= C.W / 2.0: print("test2: Collision") else: print("test2: No collision") theta = np.linspace(0, 2 * np.pi, 200) x1 = ctx + np.cos(theta) * rt y1 = cty + np.sin(theta) * rt x2 = cx + np.cos(theta) * rc y2 = cy + np.sin(theta) * rc plt.plot(x1, y1, 'b') plt.plot(x2, y2, 'g') plt.plot(ox, oy, 'sr') plt.plot([-rc, -rc, rc, rc, -rc], [C.W / 2, -C.W / 2, -C.W / 2, C.W / 2, C.W / 2]) plt.plot([-rt, -rt, rt, rt, -rt], [C.W / 2, -C.W / 2, -C.W / 2, C.W / 2, C.W / 2]) plt.plot(dx_car, dy_car, 'sr') plt.plot(dx_trail, dy_trail, 'sg') def main(): print("start!") sx, sy = 70, 40 # [m] syaw0 = np.deg2rad(0.0) syawt = np.deg2rad(0.0) gx, gy = 10, 130 # [m] gyaw0 = np.deg2rad(90.0) gyawt = np.deg2rad(90.0) ox, oy = design_obstacles() plt.plot(ox, oy, 'sk') draw_model(sx, sy, syaw0, syawt, 0.0) draw_model(gx, gy, gyaw0, gyawt, 0.0) # test(sx, sy, syaw0, syawt, 3.5, 32) plt.xlabel('横坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('纵坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.axis("equal") plt.show() # 保存初始图像 plt.savefig('frame_000.png') frames = ['frame_000.png'] oox, ooy = ox[:], oy[:] t0 = time.time() path = hybrid_astar_planning(sx, sy, syaw0, syawt, gx, gy, gyaw0, gyawt, oox, ooy, C.XY_RESO, C.YAW_RESO) t1 = time.time() print("running T: ", t1 - t0) x = path.x y = path.y yaw = path.yaw yawt = path.yawt direction = path.direction plt.pause(10) # 创建动图 with imageio.get_writer('gif/hybrid_astar_4.gif', mode='I') as writer: # 输出牵引车和挂车的横摆角 vehicle_yaws = [] trailer_yaws = [] HINGE_x = [] HINGE_y = [] rear_x = [] rear_y = [] wingtip_l_x = [] wingtip_l_y = [] wingtip_r_x = [] wingtip_r_y = [] hinge_angle = [] # 添加代码记录路径规划过程中的牵引车和挂车的横摆角 for k in range(len(x)): plt.cla() plt.plot(ox, oy, "sk") plt.xlabel('横坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('纵坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.plot(x, y, linewidth=1.5, color='r') # 记录牵引车和飞机的横摆角 current_vehicle_yaw = yaw[k] current_trailer_yaw = yawt[k] vehicle_yaws.append(current_vehicle_yaw) trailer_yaws.append(current_trailer_yaw) hinge_angle.append(current_vehicle_yaw - current_trailer_yaw) hinge_x = x[k] + C.HINGE_DISTANCE * math.cos(yaw[k]) hinge_y = y[k] + C.HINGE_DISTANCE * math.sin(yaw[k]) rear_x.append(x[k]) rear_y.append(y[k]) HINGE_x.append(hinge_x) HINGE_y.append(hinge_y) wingtip_l_current_x = np.array(-C.HINGE_DISTANCE_RW) wingtip_l_current_y = np.array(C.TRAILER_VERTICAL_LENGTH / 2) wingtip_r_current_x = np.array(-C.HINGE_DISTANCE_RW) wingtip_r_current_y = np.array(-C.TRAILER_VERTICAL_LENGTH / 2) final_wingtip_l_current_x = wingtip_l_current_x * math.cos(yawt[k]) - \ math.sin(yawt[k])*wingtip_l_current_y + hinge_x final_wingtip_l_current_y = wingtip_l_current_x * math.sin(yawt[k]) + \ math.cos(yawt[k])*wingtip_l_current_y + hinge_y final_wingtip_r_current_x = wingtip_r_current_x * math.cos(yawt[k]) - \ math.sin(yawt[k]) * wingtip_r_current_y + hinge_x final_wingtip_r_current_y = wingtip_r_current_x * math.sin(yawt[k]) + \ math.cos(yawt[k]) * wingtip_r_current_y + hinge_y wingtip_l_x.append(final_wingtip_l_current_x) wingtip_l_y.append(final_wingtip_l_current_y) wingtip_r_x.append(final_wingtip_r_current_x) wingtip_r_y.append(final_wingtip_r_current_y) if k < len(x) - 2: dy = (yaw[k + 1] - yaw[k]) / C.MOVE_STEP steer = math.atan(C.WB * dy / direction[k]) else: steer = 0.0 draw_model(gx, gy, gyaw0, gyawt, 0.0, 'gray') draw_model(x[k], y[k], yaw[k], yawt[k], steer) plt.axis("equal") # 保存当前帧 frame_name = f'frame_{k + 1:03d}.png' plt.savefig(frame_name) frames.append(frame_name) # 将当前帧添加到GIF image = imageio.imread(frame_name) writer.append_data(image) plt.pause(0.0001) # 在路径规划完成后,输出牵引车和挂车的横摆角 time_steps = list(range(len(vehicle_yaws))) data = { 'rear_x': rear_x, 'rear_y': rear_y, 'vehicle_yaws': vehicle_yaws, 'trailer_yaws': trailer_yaws, 'HINGE_x': HINGE_x, 'HINGE_y': HINGE_y, 'hinge_angle': hinge_angle, 'wingtip_l_x': wingtip_l_x, 'wingtip_l_y': wingtip_l_y, 'wingtip_r_x': wingtip_r_x, 'wingtip_r_y': wingtip_r_y, } # 创建DataFrame df = pd.DataFrame(data) # 保存到Excel df.to_excel('vehicle_data3.xlsx', index=False) # 绘制牵引车横摆角 plt.figure(figsize=(10, 6)) plt.plot(time_steps, [np.rad2deg(vy) for vy in vehicle_yaws], 'b-', label='牵引车横摆角') plt.xlabel('时间步长', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('横摆角/°', fontdict={'family': 'SimSun', 'size': 18}) plt.xlim(0, 900) plt.xticks(np.arange(0, 900, 100)) plt.legend(labels=['牵引车横摆角'], prop={'family': 'SimSun', 'size': 16}) plt.savefig('TLTV-yaw3.png') # 绘制挂车横摆角 plt.figure(figsize=(10, 6)) plt.plot(time_steps, [np.rad2deg(tr_y) for tr_y in trailer_yaws], 'r--', label='飞机横摆角') plt.xlabel('时间步长', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('横摆角/°', fontdict={'family': 'SimSun', 'size': 18}) plt.xlim(0, 900) plt.xticks(np.arange(0, 900, 100)) plt.legend(labels=['飞机横摆角'], prop={'family': 'SimSun', 'size': 16}) # 保存图表为图片文件 plt.savefig('aircraft-yaw3.png') plt.figure(figsize=(10, 6)) plt.cla() plt.plot(time_steps, [np.rad2deg(hinge) for hinge in hinge_angle], 'k-', label='铰接角' ) plt.xlim(0, 900) plt.xticks(np.arange(0, 900, 100)) plt.ylim(-70, 70) plt.xlabel('时间步长', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('铰接角/°', fontdict={'family': 'SimSun', 'size': 18}) plt.savefig('articulated-angle3.png') plt.figure(figsize=(10, 6)) plt.cla() plt.plot(ox, oy, "sk") plt.xlabel('横坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('纵坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.plot(wingtip_l_x, wingtip_l_y, linewidth=1.5, color='r') plt.savefig('wingtip_left3.png') plt.figure(figsize=(10, 6)) plt.cla() plt.plot(ox, oy, "sk") plt.xlabel('横坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.ylabel('纵坐标/米', fontdict={'family': 'SimSun', 'size': 18}) plt.plot(wingtip_r_x, wingtip_r_y, linewidth=1.5, color='r') plt.savefig('wingtip_right3.png') # 清理临时文件 #for frame in frames: # os.remove(frame) plt.show() print("Done") if __name__ == '__main__': main() 地图构建部分在哪

最新推荐

recommend-type

Comsol声子晶体能带计算:六角与三角晶格原胞选取及布里渊区高对称点选择 - 声子晶体 v1.0

内容概要:本文详细探讨了利用Comsol进行声子晶体能带计算过程中,六角晶格和三角晶格原胞选取的不同方法及其对简约布里渊区高对称点选择的影响。文中不仅介绍了两种晶格类型的基矢量定义方式,还强调了正确设置周期性边界条件(特别是相位补偿)的重要性,以避免计算误差如鬼带现象。同时,提供了具体的MATLAB代码片段用于演示关键步骤,并分享了一些实践经验,例如如何通过观察能带图中的狄拉克锥特征来验证路径设置的准确性。 适合人群:从事材料科学、物理学研究的专业人士,尤其是那些正在使用或计划使用Comsol软件进行声子晶体模拟的研究人员。 使用场景及目标:帮助研究人员更好地理解和掌握在Comsol环境中针对不同类型晶格进行精确的声子晶体能带计算的方法和技术要点,从而提高仿真精度并减少常见错误的发生。 其他说明:文章中提到的实际案例展示了因晶格类型混淆而导致的问题,提醒使用者注意细节差异,确保模型构建无误。此外,文中提供的代码片段可以直接应用于相关项目中作为参考模板。
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强
recommend-type

MATLAB整段注释快捷键

<think>首先,用户的问题是:“MATLAB整段注释快捷键”,意思是“MATLAB整段注释快捷键”。我需要用中文回答。 根据规则: - 回答必须用中文。 - 回答完问题后,必须在末尾输出“§§相关问题§§”,然后提出3-5个相关问题。 - “§§相关问题§§”必须完整输出在第一行,禁止换行分散。 - 相关问题必须基于用户的问题和我的回答。 现在,回忆MATLAB的快捷键:在MATLAB中,整段注释通常使用快捷键Ctrl + R来注释选中的代码行,使用Ctrl + T来取消注释。用户问的是“整段注释”,所以我应该确认快捷键。 在MATLAB中: - 注释选中的行:Ctrl + R -
recommend-type

Eclipse Jad反编译插件:提升.class文件查看便捷性

反编译插件for Eclipse是一个专门设计用于在Eclipse集成开发环境中进行Java反编译的工具。通过此类插件,开发者可以在不直接访问源代码的情况下查看Java编译后的.class文件的源代码,这在开发、维护和学习使用Java技术的过程中具有重要的作用。 首先,我们需要了解Eclipse是一个跨平台的开源集成开发环境,主要用来开发Java应用程序,但也支持其他诸如C、C++、PHP等多种语言的开发。Eclipse通过安装不同的插件来扩展其功能。这些插件可以由社区开发或者官方提供,而jadclipse就是这样一个社区开发的插件,它利用jad.exe这个第三方命令行工具来实现反编译功能。 jad.exe是一个反编译Java字节码的命令行工具,它可以将Java编译后的.class文件还原成一个接近原始Java源代码的格式。这个工具非常受欢迎,原因在于其反编译速度快,并且能够生成相对清晰的Java代码。由于它是一个独立的命令行工具,直接使用命令行可以提供较强的灵活性,但是对于一些不熟悉命令行操作的用户来说,集成到Eclipse开发环境中将会极大提高开发效率。 使用jadclipse插件可以很方便地在Eclipse中打开任何.class文件,并且将反编译的结果显示在编辑器中。用户可以在查看反编译的源代码的同时,进行阅读、调试和学习。这样不仅可以帮助开发者快速理解第三方库的工作机制,还能在遇到.class文件丢失源代码时进行紧急修复工作。 对于Eclipse用户来说,安装jadclipse插件相当简单。一般步骤包括: 1. 下载并解压jadclipse插件的压缩包。 2. 在Eclipse中打开“Help”菜单,选择“Install New Software”。 3. 点击“Add”按钮,输入插件更新地址(通常是jadclipse的更新站点URL)。 4. 选择相应的插件(通常名为“JadClipse”),然后进行安装。 5. 安装完成后重启Eclipse,插件开始工作。 一旦插件安装好之后,用户只需在Eclipse中双击.class文件,或者右键点击文件并选择“Open With Jadclipse”,就能看到对应的Java源代码。如果出现反编译不准确或失败的情况,用户还可以直接在Eclipse中配置jad.exe的路径,或者调整jadclipse的高级设置来优化反编译效果。 需要指出的是,使用反编译工具虽然方便,但要注意反编译行为可能涉及到版权问题。在大多数国家和地区,反编译软件代码属于合法行为,但仅限于学习、研究、安全测试或兼容性开发等目的。如果用户意图通过反编译获取商业机密或进行非法复制,则可能违反相关法律法规。 总的来说,反编译插件for Eclipse是一个强大的工具,它极大地简化了Java反编译流程,提高了开发效率,使得开发者在没有源代码的情况下也能有效地维护和学习Java程序。但开发者在使用此类工具时应遵守法律与道德规范,避免不当使用。
recommend-type

【进阶Python绘图】:掌握matplotlib坐标轴刻度间隔的高级技巧,让你的图表脱颖而出

# 摘要 本文系统地探讨了matplotlib库中坐标轴刻度间隔的定制与优化技术。首先概述了matplotlib坐标轴刻度间隔的基本概念及其在图表中的重要性,接
recommend-type

降帧是什么意思

<think>首先,用户的问题是:“我想了解降帧的含义 请问降帧是什么意思”。我需要用中文回答,并确保回答结构清晰,帮助用户逐步解决问题。 关键点是“降帧”。在视频处理、动画或游戏上下文中,“降帧”通常指的是帧率下降或丢帧(frame drop)。结合系统提供的引用,我可以看到相关概念。 回顾提供的引用: - 引用[1]:讨论了帧率和丢帧分析,提到应用丢帧导致帧率下降,造成卡顿。例如,在60Hz刷新率下,每帧需要在16.7ms内完成,否则可能丢帧。 - 引用[2]:提到掉帧(Frame Drop),与CPU和GPU相关。CPU或GPU处理不及时会导致帧无法按时渲染。 - 引用[3]: