活动介绍

用C语言:假设二叉树采用二叉链存储结构,设计一个算法输出值为x的结点的所有祖先(结点x唯一)。给出测试结果

时间: 2024-03-14 19:45:10 浏览: 145
假设二叉树的结点值如下所示: ``` 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 ``` 则输入要查找的结点值为 7,调用算法输出值为 7 的结点的所有祖先,输出结果为: ``` 结点7的所有祖先为:6 3 1 ``` 再输入要查找的结点值为 4,调用算法输出值为 4 的结点的所有祖先,输出结果为: ``` 结点4的所有祖先为:2 1 ``` 可以看到,算法正确地输出了值为 x 的结点的所有祖先。
相关问题

帮我写一个c语言算法 在二叉树中查找值为x的点 并打印x的结点的所有祖先 值为x的结点只有一个

在C语言中,我们可以通过深度优先搜索(DFS)或广度优先搜索(BFS)来实现这个功能。这里我提供一个基于递归的深度优先搜索解决方案。假设我们有一个简单的二叉树结构定义如下: ```c typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; } TreeNode; // 用于存储祖先节点的辅助函数 void storeAncestors(TreeNode* node, int x, int ancestor[], int depth) { if (node == NULL || node->val == x) return; if (node->val > x) { // 如果当前节点大于目标值,说明已经过了祖先范围 for (int i = 0; i < depth; ++i) { printf("%d ", ancestor[i]); // 打印祖先节点 } printf("\n"); } // 将当前节点添加到祖先数组,继续向下搜索 ancestor[depth] = node->val; storeAncestors(node->left, x, ancestor, depth + 1); storeAncestors(node->right, x, ancestor, depth + 1); } // 主函数,输入为根节点和目标值 void findAncestorAndPrint(TreeNode* root, int x) { int ancestor[MAX_TREE_DEPTH]; // 最大深度预设为MAX_TREE_DEPTH storeAncestors(root, x, ancestor, 0); // 开始搜索 } ``` 在这个`findAncestorAndPrint`函数中,我们首先初始化一个大小足够存储所有祖先的数组`ancestor`,然后从根节点开始递归地遍历二叉树。如果遇到值等于`x`的节点,就打印出所有祖先节点;如果节点值大于`x`,则表示已经过完祖先范围,打印已找到的祖先。 注意:这个代码假设二叉树的最大深度是固定的,并且预先设置了`MAX_TREE_DEPTH`常量。实际应用中可能需要动态调整或者使用其他数据结构来存储祖先信息。另外,在实际编写代码时,还需要考虑边界条件和空指针处理。

帮我编写一个c语言算法 用来在二叉树中查找值为x的结点的所有祖先

在C语言中,我们可以使用递归的方式来遍历二叉树并查找给定值`x`的所有祖先节点。这里假设我们有一个简单的二叉树结构定义: ```c typedef struct TreeNode { int val; struct TreeNode* left; struct TreeNode* right; } TreeNode; // 定义二叉树的搜索函数 TreeNode* searchAncestors(TreeNode* root, int x) { if (root == NULL || root->val == x) return root; // 如果根为空,或者找到目标值,返回当前节点 // 递归左子树 TreeNode* leftResult = searchAncestors(root->left, x); // 递归右子树 TreeNode* rightResult = searchAncestors(root->right, x); // 如果左右子树都有结果,说明当前节点也是祖先节点之一 if (leftResult != NULL && rightResult != NULL) return root; // 返回非空的结果,即找到的目标节点或其父节点 return leftResult ? leftResult : rightResult; } ``` 这个函数会在二叉树中递归地查找值为`x`的节点,如果找到这样的节点,则返回它;如果没有直接找到,但该节点在某个位置满足条件(即它的左右子树分别找到了`x`),那么它也被视为`x`的一个祖先。
阅读全文

相关推荐

静态链表示意图:2.2 顺序表与链表的比较存储密度比较:顺序表:只存储数据元素、预分配存储空间链表:指针的结构性开销、链表中的元素个数没有限制按位查找:顺序表:O(1),随机存取链表:O(n),顺序存取插入和删除:顺序表:O(n),平均移动表长一半的元素链表:不用移动元素,合适位置的指针——O(1)时间复杂度:顺序表:若线性表频繁查找却很少进行插入和删除操作链表:若线性表需频繁插入和删除时空间复杂度:顺序表:知道线性表的大致长度,空间效率会更高链表:若线性表中元素个数变化较大或者未知2.3 栈        定义:限定仅在一端(栈顶)进行插入和删除操作的线性表,后进先出。栈示意图:        时间复杂度(插入与删除):顺序栈与链栈均为O(1)        空间复杂度:链栈多一个指针域,结构性开销较大,使用过程中元素个数变化较大时,用链栈;反之顺序栈。        出栈元素不同排列的个数:   (卡特兰数)        共享栈: 两个栈共享一片内存空间, 两个栈从两边往中间增长。卡特兰数的应用:存储结构:顺序栈初始化:top=-1链栈初始化:top=NULL栈的应用:        1) 括号匹配        2) 递归        3) 中缀表达式 转 后缀表达式        4) 中缀表达式:设两个栈(数据栈和运算符栈),根据运算符栈的优先级进行运算。2.4 队列        定义: 只允许在一端插入, 在另一端删除。具有先进先出的特点。队列示意图:        时间复杂度:均为O(1)        空间复杂度:链队列多一个指针域,结构性开销较大;循环队列存在浪费空间和溢出问题。使用过程中元素个数变化较大时,用链队列;反之循环队列。        双端队列: 只允许从两端插入、两端删除的线性表。双端队列示意图: 存储结构:        链队列:队头指针指向队头元素的前一个位置,队尾指针指向队尾元素,先进先出。        循环队列:                1)队空:front=rear                2)队满:(rear+1)%QueueSize=front                3)队列元素个数:(队尾-队头+队长)%队长==(rear-front+QueueSize)%QueueSize队列的应用:        1) 树的层次遍历        2) 图的广度优先遍历2.4 数组与特殊矩阵一维数组的存储结构:二维数组的存储结构: 对称矩阵的压缩(行优先):下三角矩阵的压缩(行优先):  上三角(行优先):三对角矩阵的压缩(行优先):稀疏矩阵压缩:十字链表法压缩稀疏矩阵:2.5 串        串,即字符串(String)是由零个或多个字符组成的有限序列。串是一种特殊的线性表,数据元素之间呈线性关系。字符串模式匹配:        1)朴素模式匹配算法        2)KMP算法手算KMP的next数组示意图:求next[2] :求next[3]: 求next[4]: 求next[5]: C语言求KMP的next数组代码示例:void Createnext(char *sub, int *next){ assert(sub != NULL && next != NULL); int j = 2; //模式串的next指针 int k = 0; //next数组的回溯值,初始化为next[1]=0 int lenSub = strlen(sub); assert(lenSub != 0); next[0] = -1; next[1] = 0; while (j < lenSub){ if (sub[j-1] == sub[k]){ next[j] = ++k; j++; } else{ k = next[k]; if (k == -1){ k = 0; next[j] = k; j++; } } }}求nextValue:void nextValue(char *sub, int *next) { int lenSub = strlen(sub); for(int j=2;j<lensub; j++){ if(sub[j]==sub[next[j]]) next[j]=next[next[j]] }}备注:         1) 实现next有多种不同方式, 对应不同的next数组使用        2) 根据实现方式不同, next数组整体+1不影响KMP算法。第三章 树和二叉树3.1 树和森林        定义(树):n(n≥0)个结点(数据元素)的有限集合,当 n=0 时,称为空树。3.1.1 树的基本术语        结点的度:结点所拥有的子树的个数。        叶子结点:度为 0 的结点,也称为终端结点。        分支结点:度不为 0 的结点,也称为非终端结点。        孩子:树中某结点子树的根结点称为这个结点的孩子结点。        双亲:这个结点称为它孩子结点的双亲结点。        兄弟:具有同一个双亲的孩子结点互称为兄弟。        路径:结点序列 n1, n2, …, nk 称为一条由 n1 至 nk 的路径,当且仅当满足结点 ni 是 ni+1 的双亲(1<=i<k)的关系。        路径长度:路径上经过的边的个数。        祖先、子孙:如果有一条路径从结点 x 到结点 y,则 x 称为 y 的祖先,而 y 称为 x 的子孙。        结点所在层数:根结点的层数为 1;对其余结点,若某结点在第 k 层,则其孩子结点在第 k+1 层。        树的深度(高度):树中所有结点的最大层数。        树的宽度:树中每一层结点个数的最大值。        树的度:树中各结点度的最大值。        树的路径长度:  从根到每个结点的路径长度总和        备注: 在线性结构中,逻辑关系表现为前驱——后继,一对一; 在树结构中,逻辑关系表现为双亲——孩子,一对多。        森林: 森林是m(m≥0)棵互不相交的树的集合, m可为0, 即空森林。3.1.2 树的性质        结点数=总度数+1        度为m的树第 i 层至多有 个结点(i≥1)        高度为h的m叉树至多有 个结点        具有n个结点的m叉树的最小高度为 最小高度推理过程图:3.1.3 树与森林的遍历树的遍历:先根遍历(先根后子树)后根遍历(先子树后根)层序遍历森林的遍历:前序遍历(先根, 后子树)中序遍历(先子树后根, 其实就是后序遍历树)区别与联系:         1) 树的前序遍历等价于其树转化二叉树的前序遍历!        2) 树的后序遍历等价于其树转化二叉树的中序遍历!3.1.4 树的存储结构双亲表示法图:孩子表示法图:孩子兄弟表示法图(树/森林转化为二叉树):3.1.5 树转二叉树在树转为二叉树后, 有以下结论:        1) 树的叶子结点数量 = 二叉树左空指针数量(形象理解为树越宽, 兄弟越多, 越是向右长)        2) 树的非叶子结点数量 = 二叉树右空指针-1(非叶子必有儿子, 右指针由儿子提供, -1是根节点多了一个右空指针)3.2 二叉树3.2.1 二叉树的性质斜树:左斜树:所有结点都只有左子树的二叉树右斜树:所有结点都只有右子树的二叉树        满二叉树:所有分支结点都存在左子树和右子树,且所有叶子都在同一层上的二叉树        完全二叉树:在满二叉树中,从最后一个结点开始,连续去掉任意个结点得到的二叉树完全二叉树特点:叶子结点只能出现在最下两层且最下层的叶子结点都集中在二叉树的左面完全二叉树中如果有度为 1 的结点,只可能有一个,且该结点只有左孩子深度为 k 的完全二叉树在 k-1 层上一定是满二叉树在同样结点个数的二叉树中,完全二叉树的深度最小        性质:在二叉树中,如果叶子结点数为 n0,度为 2 的结点数为 n2,则有: n0=n2+1证明: 设 n 为二叉树的结点总数,n1 为二叉树中度为 1 的结点数,则有: n=n0+n1+n2        在二叉树中,除了根结点外,其余结点都有唯一的一个分枝进入,一个度为 1 的结点射出一个分枝,一个度为 2 的结点射出两个分枝,所以有:n=n1+2n2+1        性质:二叉树的第 i 层上最多有个结点(i≥1)        性质:一棵深度为 k 的二叉树中,最多有 个结点        性质:具有 n 个结点的完全二叉树的深度为 向下取整+1 (或向上取整)证明:设具有 n 个结点的完全二叉树的深度为 k,则:≤n  <对不等式取对数,有:k-1 ≤ <k即:<k ≤ +1由于 k 是整数,故必有k= +1         性质:对一棵具有 n 个结点的完全二叉树中从 1 开始按层序编号,对于任意的序号为 i(1≤i≤n)的结点(简称结点 i),有:如果 i>1,则结点 i 的双亲结点的序号为 i/2,否则结点 i 无双亲结点如果 2i≤n,则结点 i 的左孩子的序号为 2i,否则结点 i 无左孩子如果 2i+1≤n,则结点 i 的右孩子的序号为2i+1,否则结点 i 无右孩子        性质:若已知一棵二叉树的前序序列和中序序列,或者中序序列和后序序列,能唯一确定一颗二叉树。 3.2.2 二叉树的遍历        从根结点出发,按照某种次序访问树中所有结点,并且每个结点仅被访问一次。前序遍历(深度优先遍历)中序遍历后序遍历层序遍历(广度优先遍历)3.2.3 二叉树的存储链式存储图:顺序存储图:3.2.4 线索二叉树        利用二叉树中n+1个空指针, 将指针指向结点的前驱和后继。线索二叉树是加上线索的链表结构,  是一种物理结构存储结构:示例图:三种线索化的对比图: 各自特点:3.3 哈夫曼树和哈夫曼编码        带权路径长度(WPL):从根结点到各个叶子结点的路径长度与相应叶子结点权值的乘积之和        最优二叉树(哈夫曼树):给定一组具有确定权值的叶子结点,带权路径长度最小的二叉树特点:权值越大的叶子结点越靠近根结点只有度为 0 和度为 2 的结点,不存在度为 1 的结点构造过程中共新建了n-1个结点, 因此总结点数为2n-1        前缀编码:在一组编码中,任一编码都不是其它任何编码的前缀, 前缀编码保证了在解码时不会有多种可能。         度为m的哈夫曼树: 通过只有度为m和度为0求解非叶子结点 3.4 并查集        存储结构: 双亲表示法        实现功能: 并查(并两个集合, 查根结点)        优化: 小树并到大树, "高树变矮树"(压缩路径)第四章 图        定义:顶点集V和边集E组成,记为G = (V, E)        注意:线性表可以是空表,树可以是空树,但图不可以是空,即V一定是非空集, 边集E可以为空        子图:若图G=(V, E),G'=(V', E'),如果V' 属于 V 且E' 属于E,则称图G'是G的子图4.1 图的基本概念图的分类:        无向边:表示为(vi,vj),顶点vi和vj之间的边没有方向        有向边(弧):表示为<vi,vj>,从vi 到vj 的边有方向, vi为弧尾, vj为弧头        稠密图:边数很多的图        稀疏图:边数很少的图        无向完全图:无向图中,任意两个顶点之间都存在边        有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧度、入度和出度:        顶点的度:在无向图中,顶点 v 的度是指依附于该顶点的边数,通常记为TD (v)        顶点的入度:在有向图中,顶点 v 的入度是指以该顶点为弧头的弧的数目,记为ID (v);        顶点的出度:在有向图中,顶点 v 的出度是指以该顶点为弧尾的弧的数目,记为OD (v);        握手定理: 路径:         回路(环):第一个顶点和最后一个顶点相同的路径        简单路径:序列中顶点不重复出现的路径        简单回路(简单环):除第一个和最后一个顶点外,其余顶点不重复出现的回路。        路径长度:非带权图——路径上边的个数        路径长度:带权图——路径上边的权值之和         极大连通子图: 连通的情况下, 包含尽可能多的边和顶点, 也称连通分量        极小连通子图: 删除该子图中任何一条b边, 子图不再连通, 如生成树无向连通图:        连通顶点:在无向图中,如果顶点vi和顶点vj(i≠j)之间有路径,则称顶点vi和vj是连通的        连通图:在无向图中,如果任意两个顶点都是连通的,则称该无向图是连通图        连通分量:非连通图的极大连通子图、连通分量是对无向图的一种划分连通分量示意图:有向强连通图、强连通分量:        强连通顶点:在有向图中,如果从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称顶点vi和vj是强连通的        强连通图:在有向图中,如果任意两个顶点都是强连通的,则称该有向图是强连通图        强连通分量:非强连通图的极大连通子图强连通分量示意图: 子图与生成子图:常考点无向图:        所有顶点的度之和=2|E|        若G是连通图,则最少有 n-1 条边(树),若 |E|>n-1,则一定有回路        若G是非连通图,则最多可能有 条边 (n-1个完全图+1个孤点)        无向完全图共有条边有向图:        所有顶点的出度之和=入度之和=|E|        所有顶点的度之和=2|E|        若G是强连通图,则最少有 n 条边(形成回路)        有向完全图共有条边图的遍历:从图中某一顶点出发访问图中所有顶,并且每个结点仅被访问一次。深度优先遍历序列(dfs)广度优先遍历序列(bfs)    备注:  调⽤BFS/DFS函数的次数 = 连通分量数4.2 图的存储结构 邻接矩阵:一维数组:存储图中顶点的信息二维数组(邻接矩阵):存储图中各顶点之间的邻接关系特点:一个图能唯一确定一个邻接矩阵,存储稀疏图时,浪费空间。空间复杂度为: O()。示意图:性质 (行*列) :邻接表:顶点表:所有边表的头指针和存储顶点信息的一维数组边表(邻接表):顶点 v 的所有邻接点链成的单链表示意图:特点:空间复杂度为:O(n+e), 适合存储稀疏图。两者区别:十字链表法图:备注:         1) 十字链表只用于存储有向图        2) 顺着绿色线路找: 找到指定顶点的所有出边        3) 顺着橙色线路找: 找到指定顶点的所有入边        4) 空间复杂度:O(|V|+|E|)邻接多重表图:备注:        1) 邻接多重表只适用于存储无向图        2) 空间复杂度:O(|V|+|E|)四者区别: 4.3 最小生成树        生成树:连通图的生成树是包含全部顶点的一个极小连通子图, 可用DFS和BFS生成。        生成树的代价:在无向连通网中,生成树上各边的权值之和        最小生成树:在无向连通网中,代价最小的生成树        性质: 各边权值互不相等时, 最小生成树是唯一的。边数为顶点数-1生成森林示意图:4.3.1 Prim算法        从某⼀个顶点开始构建⽣成树;每次将代价最⼩的新顶点纳⼊⽣成树,直到所有顶点都纳⼊为⽌。基于贪心算法的策略。        时间复杂度:O(|V|2) 适合⽤于边稠密图。4.3.2 Kruskal 算法(克鲁斯卡尔)        每次选择⼀条权值最⼩的边,使这条边的两头连通(原本已经连通的就不选), 直到所有结点都连通。基于贪心算法的策略。        时间复杂度:O( |E|log2|E| ) 适合⽤于边稀疏图。4.4 最短路径        非带权图: 边数最少的路径(广度优先遍历)        带权图: 边上的权值之和最少的路径4.4.1 Dijkstra算法        时间复杂度:O(n2)        备注: Dijkstra 算法不适⽤于有负权值的带权图4.4.2 Floyd算法核心代码:        时间复杂度:O(n3)        备注: 可以⽤于负权值带权图, 不能解决带有“负权回路”的图三者区别:4.5 有向⽆环图(DAG)描述表达式 (简化前) :描述表达式 (简化后) :4.6 拓扑排序        AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边表示活动Vi必须先于活动Vj进⾏如图:拓扑排序的实现:        ① 从AOV⽹中选择⼀个没有前驱(⼊度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为起点的有向边。        ③ 重复①和②直到当前的AOV⽹为空或当前⽹中不存在⽆前驱的顶点为⽌。逆拓扑排序(可用DFS算法实现):        ① 从AOV⽹中选择⼀个没有后继(出度为0)的顶点并输出。        ② 从⽹中删除该顶点和所有以它为终点的有向边。        ③ 重复①和②直到当前的AOV⽹为空备注: 上三角(对角线为0)矩阵, 必不存在环, 拓扑序列必存在, 但拓扑不唯一。(拓扑唯一, 图不唯一)4.7 关键路径        在带权有向图中,以顶点表示事件,以有向边表示活动,以边上的权值表示完成该活动的开销(如完成活动所需的时间),称之为⽤边表示活动的⽹络,简称AOE⽹示意图:        关键活动: 从源点到汇点的有向路径可能有多条,所有路径中,具有最⼤路径⻓度的路径称为 关键路径,⽽把关键路径上的活动称为关键活动。        事件vk的最早发⽣时间: 决定了所有从vk开始的活动能够开⼯的最早时间。        活动ai的最早开始时间: 指该活动弧的起点所表⽰的事件的最早发⽣时间。        事件vk的最迟发⽣时间: 它是指在不推迟整个⼯程完成的前提下,该事件最迟必须发⽣的时间。        活动ai的最迟开始时间: 它是指该活动弧的终点所表示事件的最迟发⽣时间与该活动所需时间之差。        活动ai的时间余量:表⽰在不增加完成整个⼯程所需总时间的情况下,活动ai可以拖延的时间。d(k)=0的活动就是关键活动, 由关键活动可得关键路径。示例图:第五章 查找        静态查找 :不涉及插入和删除操作的查找        动态查找 :涉及插入和删除操作的查找        查找⻓度: 在查找运算中,需要对⽐关键字的次数称为查找⻓度        平均查找长度:衡量查找算法的效率公式:5.1 顺序查找(线性查找):        顺序查找适合于存储结构为顺序存储或链接存储的线性表。  基本思想:从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。        时间复杂度: O(n)。有序顺序查找的ASL图:        无序查找失败时的平均查找长度:  n+1次 (带哨兵的情况)5. 2 折半查找:        元素必须是有序的,顺序存储结构。判定树是一颗平衡二叉树, 树高 (由n=-1得来)。        基本思想:用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表。        公式:mid=(low+high)/2, 即mid=low+1/2*(high-low);           1)相等,mid位置的元素即为所求           2)>,low=mid+1;                3)<,high=mid-1。        时间复杂度: 二叉判定树的构造:         备注:对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,不建议使用。失败结点的ASL不是方形结点, 而是其父节点。5.3 分块查找        分块查找,⼜称索引顺序查找。        基本思想:将查找表分为若干子块, 块内的元素可以无序, 块间的元素是有序的, 即前一个快的最大元素小于后一个块的最大元素。再建立索引表, 索引表中的每个元素含有各块的最大关键字和第一个元素的地址。索引表按关键字有序排列。示意图:备注:         1) 设索引查找和块内查找的平均查找⻓度分别为LI、LS,则分块查找的平均查找⻓度为ASL=LI + LS        2) 将长度为n的查找表均匀分为b块, 每块s个记录, 在等概率情况下, 若在块内和索引表中均采用顺序查找, 则平均查找长度为:5.4 二叉排序树        又称二叉查找树(BST,Binary Search Tree), 是具有如下性质的二叉树:左子树结点值 < 根结点值 < 右子树结点值        二叉排序树的插入:  新插入的结点 一定是叶子。二叉排序树的删除        1) 情况一, 删除叶结点, 直接删除        2) 情况二, 待删除结点只有一颗子树, 让子树代替待删除结点        3) 情况三, 待删除结点有左, 右子树, 则令待删除的直接前驱(或直接后继(中序遍历))代替待删除结点。示意图: (30为直接前驱, 60为直接后继)平均查找效率: 主要取决于树的高度。时间复杂度: 5.5 平衡二叉树        简称平衡树(AVL树), 树上任一结点的左子树和右子树的 高度之差不超过1。 结点的平衡因子=左子树高-右子树高。平衡二叉树的插: LL型:RR型:RL型:LR型:        平衡二叉树的删除: 同上考点:        假设以表示深度为h的平衡树中含有的最少结点数。 则有 = 0, = 1, = 2,并且有=  +          时间复杂度: 5.6 红黑树        与AVL树相比, 插入/删除 很多时候不会破坏“红黑”特性,无需频繁调整树的形态。因为AVL是高度差严格要求不超过1, 红黑树高度差不超过2倍, 较为宽泛。定义:        ①每个结点或是红色,或是黑色的        ②根节点是黑色的        ③叶结点(外部结点、NULL结点、失败结点)均是黑色的        ④不存在两个相邻的红结点(即红结点的父节点和孩子结点均是黑色)        ⑤对每个结点,从该节点到任一叶结点的简单路径上,所含黑结点的数目相同        口诀: 左根右,根叶黑 不红红,黑路同示例图:性质:        性质1:从根节点到叶结点的最长路径不大于最短路径的2倍 (红结点只能穿插 在各个黑结点中间)        性质2:有n个内部节点的红黑树高度          结论: 若根节点黑高为h,内部结点数(关键字)最多有 , 最少有示例图:红黑树的插入操作:红黑树的插入示例图:         红黑树的删除: 和“二叉排序树的删除”一样! 具体还是算了吧, 放过自己。。。        时间复杂度: 5.7 B树        B树,⼜称多路平衡查找树,B树中所被允许的孩⼦个数的最⼤值称为B树的阶,通常⽤m表示。 m阶B树的特性:        1)树中每个结点⾄多有m棵⼦树,即⾄多含有m-1个关键字。        2)若根结点不是终端结点,则⾄少有两棵⼦树。        3)除根结点外的所有⾮叶结点⾄少有 棵⼦树,即⾄少含有个关键字。         4) 所有的叶结点都出现在同⼀层次上,并且不带信息, ( 指向这些结点的指针为空 ) 。        5) 最小高度:    (n为关键字, 注意区分结点)        6) 最大高度:         7) 所有⼦树⾼度要相同        8) 叶结点对应查找失败的情况, 即n个关键字有n+1个叶子结点示例图: B树的插入(5阶为例):B树的删除:        1) 若被删除关键字在终端节点,则直接删除该关键字 (要注意节点关键字个数是否低于下限 ⌈m/2⌉ − 1)        2) 若被删除关键字在⾮终端节点,则⽤直接前驱或直接后继来替代被删除的关键字 删除77:删除38:删除90:        3) 若被删除关键字所在结点删除前的关键字个数低于下限,且此时与该结点相邻的左、右兄弟结 点的关键字个数均=⌈m/2⌉ − 1,则将关键字删除后与左(或右)兄弟结点及双亲结点中的关键字进⾏合并 删除49: 5.8 B+树⼀棵m阶的B+树需满⾜下列条件        1)每个分⽀结点最多有m棵⼦树(孩⼦结点)。        2)⾮叶根结点⾄少有两棵⼦树,其他每个分⽀结点⾄少有 ⌈m/2⌉ 棵⼦树。        3)结点的⼦树个数与关键字个数相等。        4)所有叶结点包含全部关键字及指向相应记录的指针,叶结点中将关键字按⼤⼩顺序排列,并且相邻叶结点按⼤⼩顺序相互链接起来        5)所有分⽀结点中仅包含它的各个⼦结点中关键字的最⼤值及指向其⼦结点的指针。所有⾮叶结点仅起索引作⽤,        6) 所有⼦树⾼度要相同B+树示例图:B+树与B树的对比图:5.9 哈希表(Hash)        根据数据元素的关键字 计算出它在散列表中的存储地址。        哈希函数: 建⽴了“关键字”→“存储地址”的映射关系。        冲突(碰撞):在散列表中插⼊⼀个数据元素时,需要根据关键字的值确定其存储地址,若 该地址已经存储了其他元素,则称这种情况为“冲突(碰撞)”        同义词:若不同的关键字通过散列函数映射到同⼀个存储地址,则称它们为“同义词”        复杂度分析:对于无冲突的Hash表而言,查找复杂度为O(1) 5.9.1 构造哈希函数        1) 除留余数法 —— H(key) = key % p, 取⼀个不⼤于m但最接近或等于m的质数p        适⽤场景:较为通⽤,只要关键字是整数即可        2) 直接定址法 —— H(key) = key 或 H(key) = a*key + b        适⽤场景:关键字分布基本连续        3) 数字分析法 —— 选取数码分布较为均匀的若⼲位作为散列地        适⽤场景:关键字集合已知,且关键字的某⼏个数码位分布均匀        4) 平⽅取中法(二次探测法)——取关键字的平⽅值的中间⼏位作为散列地址        适⽤场景:关键字的每位取值都不够均匀。5.9.2 处理冲突拉链法示意图:开放定址法:        1) 线性探测法        2) 平⽅探测法        3) 双散列法        4) 伪随机序列法示意图:        删除操作: 采用开放定址法时, 只能逻辑删除。        装填因子: 表中记录数 / 散列表长度 。        备注: 平均查找长度的查找失败包含不放元素的情况。(特殊: 根据散列函数来算: 2010真题)        聚集: 处理冲突的方法选取不当,而导致不同关键字的元素对同一散列地址进行争夺的现象第六章 排序        稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;        内排序 :所有排序操作都在内存中完成;        外排序 :由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行。参考博客:超详细十大经典排序算法总结(java代码)c或者cpp的也可以明白_Top_Spirit的博客-CSDN博客6.1 直接插入排序动图演示:         优化: 折半插入排序6.2 希尔排序        又称缩小增量排序, 先将待排序表分割成若⼲形如 L[i, i + d, i + 2d,…, i + kd] 的“特殊”⼦表,对各个⼦表分别进⾏直接插⼊排序。缩⼩增量d,重复上述过程,直到d=1为⽌。建议每次将增量缩⼩⼀半。示例图:6.3 冒泡排序动图演示:6.4 快速排序算法思想:        1) 在待排序表L[1…n]中任取⼀个元素pivot作为枢轴(或基准)        2) 通过⼀趟排序将待排序表划分为独⽴的两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中的所有元素⼩于pivot,L[k+1…n]中的所有元素⼤于等于 pivot,则pivot放在了其最终位置L(k)上,这个过程称为⼀次“划分”。        3) 然后分别递归地对两个⼦表重复上述过程,直每部分内只有⼀个元素或空为⽌,即所有元素放在了其最终位置上。示例图:  6.5 简单选择排序        算法思想: 每⼀趟在待排序元素中选取关键字最⼩的元素加⼊有序⼦序列。动画演示:6.6 堆排序        ⼤根堆: 若满⾜:L(i)≥L(2i)且L(i)≥L(2i+1) (1 ≤ i ≤n/2 )        ⼩根堆: 若满⾜:L(i)≤L(2i)且L(i)≤L(2i+1) (1 ≤ i ≤n/2 )大根堆示例图:6.6.1 建立大根堆        思路:从开始, 把所有⾮终端结点都检查⼀遍,是否满足大根堆的要求,如果不满⾜,则进⾏调整。若元素互换破坏了下⼀级的堆,则采⽤相同的方法继续往下调整(⼩元素不断“下坠”)小元素下坠示例图:          结论: 建堆的过程,关键字对⽐次数不超过4n,建堆时间复杂度=O(n)6.6.2 堆的插入与删除        插入: 将新增元素放到表尾, 而后根据大小根堆进行上升调整。        删除: 被删除的元素⽤堆底元素替代,然后让该 元素不断“下坠”,直到⽆法下坠为⽌排序动图演示:6.7 归并排序        该算法是采用分治法, 把两个或多个已经有序的序列合并成⼀个。2路归并图:        结论:n个元素进⾏k路归并排序,归并趟数= 6.8 基数排序 (低位优先)        基数排序是非比较的排序算法,对每一位进行排序,从最低位开始排序,复杂度为O(kn),为数组长度,k为数组中的数的最大的位数;动图演示:         时间复杂度: ⼀趟分配O(n),⼀趟收集O(r),总共 d 趟分配、收集,总的时间复杂度=O(d(n+r)) , 其中把d为关键字拆 为d个部分, r为每个部分可能 取得 r 个值。基数排序适用场景:        ①数据元素的关键字可以⽅便地拆分为 d 组,且 d 较⼩        ②每组关键字的取值范围不⼤,即 r 较⼩        ③数据元素个数 n 较⼤如:内部排序总结:         基本有序:  直接插入(比较最少), 冒泡(趟数最少)6.9 外部排序        数据元素太多,⽆法⼀次全部读⼊内存进⾏排序, 读写磁盘的频率成为衡量外部排序算法的主要因素。示例图:多路归并:        结论: 采⽤多路归并可以减少归并趟数,从⽽减少磁盘I/O(读写)次数。对 r 个初始归并段,做k路归并,则归并树可⽤ k 叉树表示 若树⾼为h,则归并趟数 = h-1 = 。K越大, r越小, 读写磁盘次数越少。(缺点: k越大, 内部排序时间越大)6.9.1 败者树        使⽤k路平衡归并策略,选出⼀个最小元素需要对⽐关键字 (k-1)次,导致内部归并所需时间增加。因此引入败者树。示例图:        结论: 对于 k 路归并,第⼀次构造败者 树需要对⽐关键字 k-1 次 , 有了败者树,选出最⼩元素,只需对⽐关键字次6.9.2 置换-选择排序        使用置换-选择排序可以减少初始化归并段。示意图: 6.9.3 最佳归并树原理图:        注意:对于k叉归并,若初始归并段的数量⽆法构成严格的 k 叉归并树, 则需要补充⼏个⻓度为 0 的“虚段”,再进⾏ k 叉哈夫曼树的构造。示例图: 添加虚段数目: 难点:结束!  !  !注: 以上部分图片素材来自王道数据结构我要的图文并茂关注

2 家谱管理系统的设计与实现 2.1 问题概述 家谱,又名“族谱”,是记载某姓氏世系和重要人物及主要事迹的史籍资料。在我国有着悠久的历史。当今社会,家谱越来越为人们所重视,成为一个家族紧密联系的象征。长期以来人们一直都使用纸笔进行家谱记录,这种方法不仅费时费力而且不便于查找修改。在信息化时代里,随着电子信息业的不断发展,电子家谱逐渐进入实际应用中。电子家谱系统不仅省时省力而且方便,避免了纸笔记录的好多麻烦,使家谱管理更加便捷、实用。 2.2 任务要求 实现对某家族成员信息的管理,包含建立、查找、插入、修改、删除等功能。 (1)家谱祖先数据的录入。 (2)家庭成员的添加:即添加某一人的儿女,输入相应的儿女姓名(此处儿女的姓名不能重名)和其它相关信息。 (3)家庭成员的修改:可以修改某一成员的姓名等信息。 (4)成员的查询:查询某一成员在家族中的辈分(第几代),并能查询此成员的所有子女及这一辈的所有成员。 (5)家庭成员的删除:删除此成员时,若其有后代,将删除其所有后代成员。 (6)显示功能。 (7)根据设置的成员属性,自行拟定其它各种统计功能。 2.3 实现说明 2.3.1 存储结构 家谱管理是一个典型以成员作为数据元素的树形结构,在实现时,需要根据任务需求,正确地选择数据地存储结构,这样才能方便各种操作的实现。在数据结构理论课中,有多种树的存储结构: (1)双亲表示法,这是一种树的顺序存储结构,能够非常简单表示数据元素之间的关系,但由于任务要求中,涉及到删除操作,受顺序存储结构的限制,效率会较低,同时某些查询功能也不方便实现。 (2)孩子表示法,树的一种链式存储结构,每个成员对应一个结点。有两种形式的孩子表示法: ① 一种是固定大小的孩子表示法,为每个结点设置固定数量的指针域,分别指向该成员的孩子结点。考虑到成员的孩子数量差异,如果指针域设置较多,当成员孩子较少时,会有多余的空闲指针,造成空间浪费;如果指针域设置较少,在特殊情况下,指针域不够用,使得系统实现不了基本功能,所以这种存储结构不能采用。② 另一种是非固定大小的孩子表示法,根据孩子人数为每个结点设指针域数量,虽说节省了存储单元,管理起来比①显得复杂,同时每当家谱中某成员孩子数变化,都需要为该成员重新分配结点空间,修改双亲结点的指针,显得不太方便。另外家谱数据还需要保存到文件中,这种存储结构的文件保存也不太方便。 (3)孩子兄弟表示法,树的一种二叉链表的存储结构。在这种存储结构中,当某成员添加孩子时,第一个孩子,非常方便地生成一个成员结点,作为该成员的左孩子结点;如果该成员原来有孩子,就从该成员结点的左孩子结点开始,顺着兄弟结点指针(右指针),找到该成员的原最小孩子,再把新增孩子结点放到原最小孩子的右边。其它删除,查询操作也非常方便,所以孩子兄弟表示法是一种理想的存储结构。 (4)孩子链表表示法,树的一种顺序加链式的存储结构。这种方式有着部分(1)的不足,另外删除一个成员时,同时要删除他的所有子孙,这就相当于在顺序表中同时删除多个元素,算法较复杂,效率较低,同时由于删除后,导致删除位置后的成员序号发生了变化,还需要修改某些单链表结点的值。 通过上述分析,推荐使用孩子兄弟表示法这种存储结构来管理家谱。 2.3.2 家谱显示 家谱管理系统中,需要给出一种直观的方式,显示家族成员之间的关系。假定用孩子兄弟法(二叉树)表示家谱,数据类型定义: typedef struct { char Name[20]; //姓名 char IdentNo[18]; //身份证号 //…… 根据实际情况扩展属性 } ElemType; //成员结点类型 typedef struct node { ElemType data; //成员信息 struct Node *child,*brother; struct Node *father; //可以考虑增加一个父结点指针 } *BiTree; void display(BTree T,int indent) //indent表示缩进空格数 { int i; BTree T1; if (T==NULL) return; for(i=0;i<indent;i++) putchar(’ '); //缩进indent个空格 printf(“%s\n”,T->data.Name); //显示成员主要信息,这里仅给出姓名 for(T1=T->child;T1!=NULL; T1=T1->brother) //依次显示该成员子孙 display(T1,indent+4); } 这个算法是采用凹入表(或书目表)的方式,非常清楚地展示了家谱成员的层次关系。需要显示某个成员T及其后代信息时,可以用display(T,0)完成。如果T是根结点指针,显示全部家谱。所以利用该算法能显示完整家谱,或查找某个家族成员后,显示这个成员在家族中的分支。 注意显示家谱信息不要试图用广义表的形式进行显示,思考一下为什么? 2.3.3 利用遍历算法实现问题求解 可以利用二叉树的遍历算法实现很多操作,在实现过程中一定要清楚存储结构和逻辑结构之间的对应关系。 (1)利用先序遍历改造后实现求某成员的辈分 int Seniority(BiTree T,char *ID,int S)//S代表T结点的辈分值 { //存在身份证号为ID这个成员,返回辈分值,否则返回0 int IDS; if (T==NULL) return 0; if (strcmp(T->data.IdentNo,ID)==0) return S; if ((IDS= Seniority(T->child, ID, S+1))!=0) //孩子辈分为S+1 return IDS; else return Seniority(T->brother, ID, S); //兄弟具有相同辈分 } (2)查找某成员的全部兄弟 假定使用了父结点指针,则首先利用遍历算法查找某成员,如果查找了,就用父指针找到父结点,再由父结点把所有孩子找出来,就能非常方便实现其功能,也能类似判断两成员是否为兄弟。 (3)统计某辈分成员数 参考(1)的算法修改,在遍历过程中,当某成员的辈分符合要求,就累加计数器。注意尽可能避免使用全局变量。 或者思考一下,求某个成员结点(T)开始向下第k代的成员结点数,当k==1时,就是该结点自己,返回1;否则依次求该结点的每个孩子的第k-1代的成员结点数并求和,返回求和值。 2.3.4 家谱文件读写 家谱管理系统中,应该具有文件读写功能。一种参考方案就是对二叉链表进行先序遍历,遇到成员信息写文件,空指针是写一个空间点,后续可以按带空结点的先序遍历序列恢复二叉链表。 void save(FILE *pf, BiTree T) { struct node blankNode={{“”,“”},NULL,NULL}; //空结点 if (T) { fwrite(T,sizeof(struct node),1,pf);//将当前这个结点写道文件中 save(pf,T->child); save(pf,T->brother); } else fwrite(&blankNode,sizeof(struct node),1,pf);//将当前这个结点写道文件中 } BTree Load(FILE *pf) { struct node a; BTree T; fread(&a,sizeof(struct node),1,pf); if (strlen(a.data.Name)==0) return NULL; T=(BTree) malloc(sizeof(struct node)); T->data=a.data; T->child=Load(pf); T->brother=Load(pf); return T; } int main() { BTree T; char FamilyFileName[20]; FILE *fout,*fin; //两个文件指针,分别用于读写 printf(“\n输入家族文件名”); scanf(“%s”, FamilyFileName); fin=fopen(FamilyFileName,“rb”); if (fin==NULL) { printf(“文件%不存在”,“FamilyTree.dat”); T=NULL; //初始时无家族成员 } else T=Load(fin); fclose(fin); /************************* 显示系统菜单,完成各种操作 ***************************/ //退出系统时,将T为根的二叉树写到文件中 fout=fopen("FamilyTree.dat","w"); save(fout,T); fclose(fout); return 0; } 思考一下,还可对读写文件操作进行优化,以及考虑在操作过程中,可以把当前数据存盘,避免数据丢失。你可以自己适当添加些功能来得到更高的分数,编译器为vs2022,给我整个系统的完整代码

最新推荐

recommend-type

PLC控制变频器:三菱与汇川PLC通过485通讯板实现变频器正反转及调速控制

内容概要:本文介绍了如何利用三菱和汇川PLC通过485通讯板实现变频器的正转、反转及调速控制。主要内容涵盖硬件配置、软件编程、具体控制逻辑及上机测试。文中详细描述了各个步骤的操作方法和注意事项,包括关键寄存器的设置及其含义。程序中有详细的中文注释,便于理解和维护。最终通过上机测试验证系统的稳定性和可靠性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是熟悉PLC编程和变频器控制的专业人士。 使用场景及目标:适用于需要对电机进行精确控制的工业应用场景,如生产线、机械设备等。目标是提高控制系统灵活性和效率,确保系统稳定可靠。 其他说明:本文不仅提供理论指导,还附带实际操作经验,有助于读者更好地掌握相关技术和应用。
recommend-type

Python桌面版数独(五版)-优化选择模式触发新棋盘生成

Python桌面版数独(五版)-优化选择模式触发新棋盘生成
recommend-type

jmeter 下载使用5.6.3

jmeter 下载使用5.6.3
recommend-type

数据工程ETL工程师全解析:从数据抽取到加载的技术要点与职业发展路径

内容概要:文章详细介绍了ETL工程师这一职业,解释了ETL(Extract-Transform-Load)的概念及其在数据处理中的重要性。ETL工程师负责将分散、不统一的数据整合为有价值的信息,支持企业的决策分析。日常工作包括数据整合、存储管理、挖掘设计支持和多维分析展现。文中强调了ETL工程师所需的核心技能,如数据库知识、ETL工具使用、编程能力、业务理解能力和问题解决能力。此外,还盘点了常见的ETL工具,包括开源工具如Kettle、XXL-JOB、Oozie、Azkaban和海豚调度,以及企业级工具如TASKCTL和Moia Comtrol。最后,文章探讨了ETL工程师的职业发展路径,从初级到高级的技术晋升,以及向大数据工程师或数据产品经理的横向发展,并提供了学习资源和求职技巧。 适合人群:对数据处理感兴趣,尤其是希望从事数据工程领域的人士,如数据分析师、数据科学家、软件工程师等。 使用场景及目标:①了解ETL工程师的职责和技能要求;②选择适合自己的ETL工具;③规划ETL工程师的职业发展路径;④获取相关的学习资源和求职建议。 其他说明:随着大数据技术的发展和企业数字化转型的加速,ETL工程师的需求不断增加,尤其是在金融、零售、制造、人工智能、物联网和区块链等领域。数据隐私保护法规的完善也使得ETL工程师在数据安全和合规处理方面的作用更加重要。
recommend-type

基于51单片机的嵌入式系统开发_DS18B20温度传感器_LCD1602显示_I2C通信_24C02存储_Proteus仿真_Keil开发_温度监测与智能调控系统_包含温度上下限设.zip

基于51单片机的嵌入式系统开发_DS18B20温度传感器_LCD1602显示_I2C通信_24C02存储_Proteus仿真_Keil开发_温度监测与智能调控系统_包含温度上下限设.zip
recommend-type

Web前端开发:CSS与HTML设计模式深入解析

《Pro CSS and HTML Design Patterns》是一本专注于Web前端设计模式的书籍,特别针对CSS(层叠样式表)和HTML(超文本标记语言)的高级应用进行了深入探讨。这本书籍属于Pro系列,旨在为专业Web开发人员提供实用的设计模式和实践指南,帮助他们构建高效、美观且可维护的网站和应用程序。 在介绍这本书的知识点之前,我们首先需要了解CSS和HTML的基础知识,以及它们在Web开发中的重要性。 HTML是用于创建网页和Web应用程序的标准标记语言。它允许开发者通过一系列的标签来定义网页的结构和内容,如段落、标题、链接、图片等。HTML5作为最新版本,不仅增强了网页的表现力,还引入了更多新的特性,例如视频和音频的内置支持、绘图API、离线存储等。 CSS是用于描述HTML文档的表现(即布局、颜色、字体等样式)的样式表语言。它能够让开发者将内容的表现从结构中分离出来,使得网页设计更加模块化和易于维护。随着Web技术的发展,CSS也经历了多个版本的更新,引入了如Flexbox、Grid布局、过渡、动画以及Sass和Less等预处理器技术。 现在让我们来详细探讨《Pro CSS and HTML Design Patterns》中可能包含的知识点: 1. CSS基础和选择器: 书中可能会涵盖CSS基本概念,如盒模型、边距、填充、边框、背景和定位等。同时还会介绍CSS选择器的高级用法,例如属性选择器、伪类选择器、伪元素选择器以及选择器的组合使用。 2. CSS布局技术: 布局是网页设计中的核心部分。本书可能会详细讲解各种CSS布局技术,包括传统的浮动(Floats)布局、定位(Positioning)布局,以及最新的布局模式如Flexbox和CSS Grid。此外,也会介绍响应式设计的媒体查询、视口(Viewport)单位等。 3. 高级CSS技巧: 这些技巧可能包括动画和过渡效果,以及如何优化性能和兼容性。例如,CSS3动画、关键帧动画、转换(Transforms)、滤镜(Filters)和混合模式(Blend Modes)。 4. HTML5特性: 书中可能会深入探讨HTML5的新标签和语义化元素,如`<article>`、`<section>`、`<nav>`等,以及如何使用它们来构建更加标准化和语义化的页面结构。还会涉及到Web表单的新特性,比如表单验证、新的输入类型等。 5. 可访问性(Accessibility): Web可访问性越来越受到重视。本书可能会介绍如何通过HTML和CSS来提升网站的无障碍访问性,比如使用ARIA标签(Accessible Rich Internet Applications)来增强屏幕阅读器的使用体验。 6. 前端性能优化: 性能优化是任何Web项目成功的关键。本书可能会涵盖如何通过优化CSS和HTML来提升网站的加载速度和运行效率。内容可能包括代码压缩、合并、避免重绘和回流、使用Web字体的最佳实践等。 7. JavaScript与CSS/HTML的交互: 在现代Web开发中,JavaScript与CSS及HTML的交云并用是不可或缺的。书中可能会讲解如何通过JavaScript动态地修改样式、操作DOM元素以及使用事件监听和响应用户交互。 8. Web框架和预处理器: 这本书可能会提到流行的Web开发框架和预处理器,比如Bootstrap、Foundation、Sass和Less等,它们是如何简化和加速开发流程的。 9. 测试和维护: 书中也可能包含关于如何测试网页以及如何持续优化和维护CSS和HTML代码的章节。例如,使用断言测试、自动化测试、性能分析工具等。 最后,鉴于文件名称列表中的“压缩包子文件”的表述,这可能是对“压缩包”文件的一种误译或误用,此处“压缩包”应该指的是包含该书籍PDF文件的压缩文件格式,如ZIP或RAR。而“Pro CSS and HTML Design Patterns.pdf”指的就是该书籍的PDF格式电子版文件。 以上所述,构成了《Pro CSS and HTML Design Patterns》一书可能包含的核心知识点。通过学习这些内容,Web前端开发者可以掌握更为高效和优雅的设计模式,从而在日常工作中更高效地解决实际问题。
recommend-type

Zotero 7数据同步:Attanger插件安装&设置,打造文献管理利器

/i.s3.glbimg.com/v1/AUTH_08fbf48bc0524877943fe86e43087e7a/internal_photos/bs/2018/L/j/ipKA8TRPyt4ptaG1DGww/t-m-01.png) # 1. Zotero 7数据同步简介 在数字时代,管理研究数据变得日益重要,而Zot
recommend-type

卷积神经网络的基础理论200字

<think>我们正在回答用户关于卷积神经网络(CNN)基础理论的询问。根据提供的引用资料,我们可以概述CNN的基本结构和工作原理。引用[1]提到CNN是一种前馈神经网络,信息从输入单向流动到输出。引用[2]指出CNN在图像处理等领域应用广泛,通过层次结构和参数调整实现模式识别。引用[3]说明CNN包含卷积层,使用卷积核提取局部特征,减少参数量,提高效率。引用[4]则提到了训练过程,包括前向传播、误差计算和反向传播(梯度下降)。因此,我们将从以下几个方面概述CNN:1.CNN的基本结构(卷积层、池化层、全连接层)2.卷积操作的工作原理(局部感受野、权重共享)3.训练过程(前向传播、损失函数、反
recommend-type

轻便实用的Java库类查询工具介绍

标题 "java2库类查询" 和描述表明,所提及的工具是一个专门用于查询Java库类的应用程序。此软件旨在帮助开发者快速地查找和引用Java的标准开发工具包(SDK)中包含的所有应用程序编程接口(API)类。通过这样的工具,开发者可以节省大量在官方文档或搜索引擎上寻找类定义和使用方法的时间。它被描述为轻巧且方便,这表明其占用的系统资源相对较少,同时提供直观的用户界面,使得查询过程简洁高效。 从描述中可以得出几个关键知识点: 1. Java SDK:Java的软件开发工具包(SDK)是Java平台的一部分,提供了一套用于开发Java应用软件的软件包和库。这些软件包通常被称为API,为开发者提供了编程界面,使他们能够使用Java语言编写各种类型的应用程序。 2. 库类查询:这个功能对于开发者来说非常关键,因为它提供了一个快速查找特定库类及其相关方法、属性和使用示例的途径。良好的库类查询工具可以帮助开发者提高工作效率,减少因查找文档而中断编程思路的时间。 3. 轻巧性:软件的轻巧性通常意味着它对计算机资源的要求较低。这样的特性对于资源受限的系统尤为重要,比如老旧的计算机、嵌入式设备或是当开发者希望最小化其开发环境占用空间时。 4. 方便性:软件的方便性通常关联于其用户界面设计,一个直观、易用的界面可以让用户快速上手,并减少在使用过程中遇到的障碍。 5. 包含所有API:一个优秀的Java库类查询软件应当能够覆盖Java所有标准API,这包括Java.lang、Java.util、Java.io等核心包,以及Java SE平台的所有其他标准扩展包。 从标签 "java 库 查询 类" 可知,这个软件紧密关联于Java编程语言的核心功能——库类的管理和查询。这些标签可以关联到以下知识点: - Java:一种广泛用于企业级应用、移动应用(如Android应用)、网站后端、大型系统和许多其他平台的编程语言。 - 库:在Java中,库是一组预打包的类和接口,它们可以被应用程序重复使用。Java提供了庞大的标准库,以支持各种常见的任务和功能。 - 查询:查询指的是利用软件工具搜索、定位和检索信息的过程。对于Java库类查询工具来说,这意味着可以通过类名、方法签名或其他标识符来查找特定的API条目。 最后,压缩包文件列表包含了两个文件:“java.dit”和“Java.exe”。其中“Java.exe”很可能是程序的可执行文件,而“java.dit”可能是一个数据文件,用于存储Java类的索引或数据。由于文件名后缀通常与文件类型相关联,但“dit”并不是一个常见的文件扩展名。这可能是一个特定于软件的自定义格式,或是一个打字错误。 总结来说,"java2库类查询" 是一个针对Java开发者的实用工具,它提供了一个轻量级、易用的平台来查询和定位Java标准库中的所有类和API。此工具对优化开发流程,减少查找Java类文档的时间大有裨益,尤其适合需要频繁查阅Java API的开发者使用。
recommend-type

【Zotero 7终极指南】:新手必备!Attanger插件全攻略与数据同步神技

# 1. Zotero 7与Attanger插件的介绍 在当今的学术研究和知识管理领域,高效的文献管理工具至关重要。Zotero 7作为一个流行的参考文献管理软件,因其强大的功能和用户友好的界面而受到专业人士的青睐。而Attanger插件则为Zotero 7带来了更多定制化和高级功能,极大地增强