活动介绍

设备,楼,层三者依次为父子节点,请设计出MySQL数据库表,后端java语言如何去查询并且返回给前端,前端用<el-tree>渲染出来,写出全部代码

时间: 2024-05-20 15:10:16 浏览: 110
好的,我会根据你的要求回答你的问题。首先,我会设计MySQL数据库的表: CREATE TABLE `device` ( `id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '设备ID', `name` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL COMMENT '设备名称', `parent_id` int(10) UNSIGNED NOT NULL DEFAULT '0' COMMENT '父设备ID', PRIMARY KEY (`id`), KEY `parent_id` (`parent_id`), CONSTRAINT `device_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `device` (`id`) ON DELETE CASCADE ON UPDATE CASCADE ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='设备表'; CREATE TABLE `building` ( `id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '楼ID', `name` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL COMMENT '楼名称', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='楼表'; CREATE TABLE `floor` ( `id` int(10) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '层ID', `name` varchar(50) COLLATE utf8mb4_unicode_ci NOT NULL COMMENT '层名称', `building_id` int(10) UNSIGNED NOT NULL COMMENT '所属楼ID', PRIMARY KEY (`id`), KEY `building_id` (`building_id`), CONSTRAINT `floor_ibfk_1` FOREIGN KEY (`building_id`) REFERENCES `building` (`id`) ON DELETE CASCADE ON UPDATE CASCADE ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci COMMENT='层表'; 这样我们就有了设备表,楼表和层表,其中设备表中的parent_id是指父设备的ID,如果这个设备是顶级设备,则parent_id设置为0。另外,我们通过外键来建立设备、楼和层的关系,方便后面的查询。 接下来,我会给出后端Java代码: /** * 获取所有设备、楼、层节点 * * @return 节点列表 */ @GetMapping("/nodes") public List<TreeNode> getNodes() { List<Device> devices = deviceService.getAllDevices(); List<Building> buildings = buildingService.getAllBuildings(); List<Floor> floors = floorService.getAllFloors(); // 构造设备节点 List<TreeNode> deviceNodes = new ArrayList<>(); for (Device device : devices) { TreeNode node = new TreeNode(); node.setId(device.getId()); node.setLabel(device.getName()); node.setParentId(device.getParentId()); node.setType(TreeNode.TYPE_DEVICE); deviceNodes.add(node); } // 构造楼节点 List<TreeNode> buildingNodes = new ArrayList<>(); for (Building building : buildings) { TreeNode node = new TreeNode(); node.setId(building.getId()); node.setLabel(building.getName()); node.setType(TreeNode.TYPE_BUILDING); buildingNodes.add(node); } // 构造层节点 List<TreeNode> floorNodes = new ArrayList<>(); for (Floor floor : floors) { TreeNode node = new TreeNode(); node.setId(floor.getId()); node.setLabel(floor.getName()); node.setParentId(floor.getBuildingId()); node.setType(TreeNode.TYPE_FLOOR); floorNodes.add(node); } // 构造树结构 List<TreeNode> treeNodes = new ArrayList<>(); treeNodes.addAll(deviceNodes); treeNodes.addAll(buildingNodes); treeNodes.addAll(floorNodes); for (TreeNode treeNode : treeNodes) { Long parentId = treeNode.getParentId(); if (parentId != null && parentId > 0) { TreeNode parentNode = treeNodes.stream() .filter(node -> node.getId().equals(parentId)) .findFirst().orElse(null); treeNode.setParent(parentNode); if (parentNode != null) { parentNode.addChild(treeNode); } } } // 返回根节点 return treeNodes.stream() .filter(node -> node.getParent() == null) .collect(Collectors.toList()); } 对于前端部分,我们可以使用Vue.js和element-ui框架来实现。我们可以使用<el-tree>组件来展示树形结构,具体代码如下: <template> <el-tree :data="nodes" :expand-on-click-node="false"></el-tree> </template> <script> import axios from 'axios' export default { data() { return { nodes: [] } }, mounted() { axios.get('/api/nodes').then(res => { this.nodes = res.data }) } } </script> 这样就可以将后端返回的树形结构渲染出来了。 完整代码如下: Java: public class Device { private Long id; private String name; private Long parentId; // 省略getter和setter } public class Building { private Long id; private String name; // 省略getter和setter } public class Floor { private Long id; private String name; private Long buildingId; // 省略getter和setter } public class TreeNode { public static final String TYPE_DEVICE = "device"; public static final String TYPE_BUILDING = "building"; public static final String TYPE_FLOOR = "floor"; private Long id; private String label; private Long parentId; private String type; private TreeNode parent; private List<TreeNode> children = new ArrayList<>(); // 省略getter和setter public void addChild(TreeNode child) { children.add(child); } } @RestController @RequestMapping("/api") public class TreeController { @Autowired private DeviceService deviceService; @Autowired private BuildingService buildingService; @Autowired private FloorService floorService; /** * 获取所有设备、楼、层节点 * * @return 节点列表 */ @GetMapping("/nodes") public List<TreeNode> getNodes() { List<Device> devices = deviceService.getAllDevices(); List<Building> buildings = buildingService.getAllBuildings(); List<Floor> floors = floorService.getAllFloors(); // 构造设备节点 List<TreeNode> deviceNodes = new ArrayList<>(); for (Device device : devices) { TreeNode node = new TreeNode(); node.setId(device.getId()); node.setLabel(device.getName()); node.setParentId(device.getParentId()); node.setType(TreeNode.TYPE_DEVICE); deviceNodes.add(node); } // 构造楼节点 List<TreeNode> buildingNodes = new ArrayList<>(); for (Building building : buildings) { TreeNode node = new TreeNode(); node.setId(building.getId()); node.setLabel(building.getName()); node.setType(TreeNode.TYPE_BUILDING); buildingNodes.add(node); } // 构造层节点 List<TreeNode> floorNodes = new ArrayList<>(); for (Floor floor : floors) { TreeNode node = new TreeNode(); node.setId(floor.getId()); node.setLabel(floor.getName()); node.setParentId(floor.getBuildingId()); node.setType(TreeNode.TYPE_FLOOR); floorNodes.add(node); } // 构造树结构 List<TreeNode> treeNodes = new ArrayList<>(); treeNodes.addAll(deviceNodes); treeNodes.addAll(buildingNodes); treeNodes.addAll(floorNodes); for (TreeNode treeNode : treeNodes) { Long parentId = treeNode.getParentId(); if (parentId != null && parentId > 0) { TreeNode parentNode = treeNodes.stream() .filter(node -> node.getId().equals(parentId)) .findFirst().orElse(null); treeNode.setParent(parentNode); if (parentNode != null) { parentNode.addChild(treeNode); } } } // 返回根节点 return treeNodes.stream() .filter(node -> node.getParent() == null) .collect(Collectors.toList()); } } Vue.js: <template> <el-tree :data="nodes" :expand-on-click-node="false"></el-tree> </template> <script> import axios from 'axios' export default { data() { return { nodes: [] } }, mounted() { axios.get('/api/nodes').then(res => { this.nodes = res.data }) } } </script> 注:这是一个示例,实际使用时需要根据具体需求进行适当调整。
阅读全文

相关推荐

大家在看

recommend-type

美敦力BIS监护仪串口通讯协议手册

Document Title: BIS, MONITORING SYSTEMS, SERIAL PORT TECHNICAL SPEC
recommend-type

Cisco Enterprise Print System-开源

一组使大量打印机的管理和支持变得更加容易的工具。
recommend-type

web仿淘宝项目

大一时团队做的一个仿淘宝的web项目,没有实现后台功能
recommend-type

只输入固定-vc实现windows多显示器编程的方法

P0.0 只输入固定 P0.1 P0CON.1 P0.2 P0CON.2 PORT_SET.PORT_REFEN P0.3 P0CON.3 自动“偷”从C2的交易应用程序在. PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[0] P0.4 P0CON.4 C2调试的LED驱动器的时钟输入,如果作为 未启用. P0.5 PORT_CTRL.PORT_LED[1:0] 输出港口被迫为.阅读 实际LED驱动器的状态(开/关) 用户应阅读 RBIT_DATA.GPIO_LED_DRIVE 14只脚 不能用于在开发系统中,由于C2交易扰 乱输出. 参考区间的时钟频率 对抗 控制控制 评论评论 NVM的编程电压 VPP = 6.5 V 矩阵,和ROFF工业* PORT_CTRL 2 GPIO 1 矩阵,和ROFF工业* PORT_CTRL 3 参考 clk_ref GPIO 矩阵 4 C2DAT 产量 CLK_OUT GPIO 5 C2CLK LED驱动器 1 2 工业* PORT_CTRL 1 2 3 1 2 6 产量 CLK_OUT GPIO 1 2 1 1 1 PORT_SET.PORT_CLKEN PORT_SET.PORT_CLKOUT[1] P0.6 P0CON.6 P0.7 P0CON.7 P1.0 P1CON.0 P1.1 P1CON.1 7 8 9 GPIO GPIO GPIO 14只脚 14只脚 14只脚 *注:工业注:工业 代表“独立报”设置. “ 矩阵矩阵 and Roff 模式控制模拟垫电路. 116 修订版修订版1.0
recommend-type

小游戏源码-端午节龙舟大赛.rar

小游戏源码-端午节龙舟大赛.rar

最新推荐

recommend-type

Oracle通过递归查询父子兄弟节点方法示例

在本篇文章中,我们将探讨如何利用递归查询来查找父子兄弟节点,这对于理解和处理这类关系非常关键。 首先,递归查询在Oracle中主要依赖于`START WITH`和`CONNECT BY`子句。`START WITH`指定查询的起始节点,而`...
recommend-type

MySQL通过自定义函数实现递归查询父级ID或者子级ID

在MySQL中,递归查询通常用于处理层次结构的数据,如组织结构、菜单系统或类别树等。当数据的层级关系无法预知或者可能无限深时,传统的JOIN操作可能无法满足需求,此时就需要自定义函数来实现递归查询。本文将详细...
recommend-type

Oracle递归树形结构查询功能

Oracle数据库在处理树形结构数据时提供了强大的递归查询功能,这种特性对于组织结构、产品分类、层级菜单等场景的应用非常广泛。递归树形结构查询主要依赖于`CONNECT BY`和`PRIOR`关键字,它们允许我们构建复杂的...
recommend-type

关于关系型数据库基本知识(主键、外键、一对一、一对多、多对一等).docx

关系型数据库是现代数据存储和管理的核心,它采用关系模型,将数据组织成二维表格的形式。关系模型由关系、元组、属性、域和关键字等基本概念构成。关系即为表格,元组代表表格中的一行,属性表示一列,域指属性的...
recommend-type

Java for循环性能优化实现解析

Java for循环性能优化实现解析 Java for循环性能优化实现解析是 Java 编程中非常重要的一部分,主要讨论了Java for循环性能优化的实现解析。下面是从文件中提炼出的相关知识点: 1. 嵌套循环优化 在Java中,嵌套...
recommend-type

获取本机IP地址的程序源码分析

从给定文件信息中我们可以提取出的关键知识点是“取本机IP”的实现方法以及与之相关的编程技术和源代码。在当今的信息技术领域中,获取本机IP地址是一项基本技能,广泛应用于网络通信类的软件开发中,下面将详细介绍这一知识点。 首先,获取本机IP地址通常需要依赖于编程语言和操作系统的API。不同的操作系统提供了不同的方法来获取IP地址。在Windows操作系统中,可以通过调用Windows API中的GetAdaptersInfo()或GetAdaptersAddresses()函数来获取网络适配器信息,进而得到IP地址。在类Unix操作系统中,可以通过读取/proc/net或是使用系统命令ifconfig、ip等来获取网络接口信息。 在程序设计过程中,获取本机IP地址的源程序通常会用到网络编程的知识,比如套接字编程(Socket Programming)。网络编程允许程序之间进行通信,套接字则是在网络通信过程中用于发送和接收数据的接口。在许多高级语言中,如Python、Java、C#等,都提供了内置的网络库和类来简化网络编程的工作。 在网络通信类中,IP地址是区分不同网络节点的重要标识,它是由IP协议规定的,用于在网络中唯一标识一个网络接口。IP地址可以是IPv4,也可以是较新的IPv6。IPv4地址由32位二进制数表示,通常分为四部分,每部分由8位构成,并以点分隔,如192.168.1.1。IPv6地址则由128位二进制数表示,其表示方法与IPv4有所不同,以冒号分隔的8组16进制数表示,如2001:0db8:85a3:0000:0000:8a2e:0370:7334。 当编写源代码以获取本机IP地址时,通常涉及到以下几个步骤: 1. 选择合适的编程语言和相关库。 2. 根据目标操作系统的API或系统命令获取网络接口信息。 3. 分析网络接口信息,提取出IP地址。 4. 将提取的IP地址转换成适合程序内部使用的格式。 5. 在程序中提供相应功能,如显示IP地址或用于网络通信。 例如,在Python中,可以使用内置的socket库来获取本机IP地址。一个简单的示例代码如下: ```python import socket # 获取主机名 hostname = socket.gethostname() # 获取本机IP local_ip = socket.gethostbyname(hostname) print("本机IP地址是:", local_ip) ``` 在实际应用中,获取本机IP地址通常是为了实现网络通信功能,例如建立客户端与服务器的连接,或者是在开发涉及到IP地址的其他功能时使用。 关于文件名称“getIP”,这是一个自解释的文件名,明显表示该文件或程序的作用是获取本机的IP地址。从标签“控件 源码 网络通信类 资源”中我们可以看出,这个文件很可能是一个可以嵌入其他软件中的代码片段,用以实现网络通信功能的一部分,具有较高的灵活性和重用性。 综上所述,获取本机IP地址是一个涉及到操作系统API、网络编程以及特定编程语言知识的技能。它不仅需要对编程语言提供的库函数有深入的理解,还要对操作系统的网络配置和IP协议有足够的认识。通过阅读和分析相关的源代码,如“getIP”,可以加深对网络编程实现细节的理解,并能够在实际开发中快速地应用这一技术。
recommend-type

【权威指南】:Win11笔记本上RTX4080驱动的安装与调试秘籍

# 1. Win11笔记本与RTX4080显卡介绍 随着技术的不断发展,笔记本电脑已不再是仅仅满足办公需求的移动设备,而是逐渐成为可以胜任复杂图形处理和游戏任务的强大工具。微软推出的Windows 11操作系统,以其全新的用户界面和改进的系统性能,为用户提供了更为流畅的操作体验。而在硬件方面,NVIDIA的RTX 4080显卡以其卓越的图形处理能力和AI支持,为笔记本电脑带来了前所未有的性能提升。本章节将带您初步了解Windows 11笔记本与NVIDIA RTX 4080显卡的基础信息,为进一步深入探讨它们的优化和调试技巧奠定基础。 ## 1.1 Win11笔记本的优势 Windows
recommend-type

windows环境举例

<think>好的,用户现在想在Windows环境下创建C函数库,需要具体的方法和示例代码。我需要结合之前的回答和用户提供的引用内容来给出合适的指导。 首先回顾之前的回答,用户已经了解了在Linux下创建静态库和动态库的方法,现在需要切换到Windows环境。根据引用[2],Windows下的C标准库和动态链接库的处理与Linux不同,比如使用dlfcn.h在Linux,而Windows可能需要其他方式。另外,引用[1]提到了在Windows下配置gcc环境(MinGW-w64),这可能是一个关键点,因为用户可能需要使用MinGW来编译库。 用户提供的引用[3]提到了使用MSVC编译器,这
recommend-type

QQ自动发送/回复系统源代码开放

根据提供的文件信息,我们可以了解到以下几点关键的知识点: ### 标题:“qqhelp” 1. **项目类型**: 标题“qqhelp”暗示这是一个与QQ相关的帮助工具或项目。QQ是中国流行的即时通讯软件,因此这个标题表明项目可能提供了对QQ客户端功能的辅助或扩展。 2. **用途**: “help”表明此项目的主要目的是提供帮助或解决问题。由于它提到了QQ,并且涉及“autosend/reply”功能,我们可以推测该项目可能用于自动化发送消息回复,或提供某种形式的自动回复机制。 ### 描述:“I put it to my web, but nobody sendmessage to got the source, now I public it. it supply qq,ticq autosend/reply ,full sourcecode use it as you like” 1. **发布情况**: 描述提到该项目原先被放置在某人的网站上,并且没有收到请求源代码的消息。这可能意味着项目不够知名或者需求不高。现在作者决定公开发布,这可能是因为希望项目能够被更多人了解和使用,或是出于开源共享的精神。 2. **功能特性**: 提到的“autosend/reply”表明该项目能够实现自动发送和回复消息。这种功能对于需要进行批量或定时消息沟通的应用场景非常有用,例如客户服务、自动化的营销通知等。 3. **代码可用性**: 作者指出提供了“full sourcecode”,意味着源代码完全开放,用户可以自由使用,无论是查看、学习还是修改,用户都有很大的灵活性。这对于希望学习编程或者有特定需求的开发者来说是一个很大的优势。 ### 标签:“综合系统类” 1. **项目分类**: 标签“综合系统类”表明这个项目可能是一个多功能的集成系统,它可能不仅限于QQ相关的功能,还可能包含了其他类型的综合服务或特性。 2. **技术范畴**: 这个标签可能表明该项目的技术实现比较全面,可能涉及到了多个技术栈或者系统集成的知识点,例如消息处理、网络编程、自动化处理等。 ### 压缩包子文件的文件名称列表: 1. **Unit1.dfm**: 这是一个Delphi或Object Pascal语言的窗体定义文件,用于定义应用程序中的用户界面布局。DFM文件通常用于存储组件的属性和位置信息,使得开发者可以快速地进行用户界面的设计和调整。 2. **qqhelp.dpr**: DPR是Delphi项目文件的扩展名,包含了Delphi项目的核心设置,如程序入口、使用的单元(Units)等。这个文件是编译和构建Delphi项目的起点,它能够帮助开发者了解项目的组织结构和编译指令。 3. **Unit1.pas**: PAS是Delphi或Object Pascal语言的源代码文件。这个文件可能包含了与QQ帮助工具相关的核心逻辑代码,例如处理自动发送和回复消息的算法等。 4. **readme.txt**: 这是一个常见的文本文件,包含项目的基本说明和使用指导,帮助用户了解如何获取、安装、运行和定制该项目。README文件通常是用户与项目首次交互时首先阅读的文件,因此它对于一个开源项目的用户友好度有着重要影响。 通过以上分析,我们可以看出“qqhelp”项目是一个针对QQ通讯工具的自动化消息发送与回复的辅助工具。项目包含完整的源代码,用户可以根据自己的需要进行查看、修改和使用。它可能包含Delphi语言编写的窗体界面和后端逻辑代码,具有一定的综合系统特性。项目作者出于某种原因将其开源,希望能够得到更广泛的使用和反馈。
recommend-type

【7步打造Win11深度学习利器】:Tensorflow-GPU与RTX4080终极优化指南

# 1. 深度学习与Windows 11的融合 在人工智能时代,深度学习已渗透到生活的方方面面,而Windows 11作为最新一代的操作系统,为深度学习提供了一个高效的工作平台。本章节将探讨深度学习技术如何与Windows 11系统融合,以及这一