活动介绍

pandas 删除某一列值为空的行

时间: 2023-10-01 12:11:34 浏览: 127
可以使用 `dropna()` 方法来删除值为空的行。下面是一个示例代码: ```python import pandas as pd # 创建一个 DataFrame data = {'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', None, 'M']} df = pd.DataFrame(data) # 删除 gender 列值为空的行 df.dropna(subset=['gender'], inplace=True) print(df) ``` 输出结果为: ``` name age gender 0 Alice 25 F 1 Bob 30 M 3 David 40 M ``` 在上面的代码中,`dropna()` 方法的 `subset` 参数指定了要删除的列,`inplace` 参数表示原地修改。
相关问题

pandas删除多个字段的行

可以使用drop函数,指定需要删除的列名,例如: ```python import pandas as pd # 创建一个DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}) # 删除多个列 df = df.drop(['B', 'C'], axis=1) print(df) ``` 输出: ``` A 0 1 1 2 2 3 ```

pyspark df删除某具体三列

<think>我们正在处理的是PySpark中的DataFrame,而不是Pandas。在PySpark中,我们使用`drop`方法来删除列,但用法与Pandas略有不同。 用户想要删除三列,我们需要指定这三列的名称。 在PySpark中,有几种方法可以删除列: 1. 使用`drop`方法,并传入一个列名字符串来删除单列,或者传入多个列名字符串来删除多列(注意:直接传入多个列名作为多个参数,而不是一个列表)。 2. 也可以传入一个列名的列表(在PySpark 2.0及以上版本中,可以直接传入一个列表,但更常见的是使用多个参数)。 注意:在PySpark中,`drop`方法不会原地修改DataFrame(因为DataFrame是不可变的),而是返回一个新的DataFrame。 步骤: 1. 导入必要的库(如果还没有创建SparkSession,需要先创建)。 2. 使用`drop`方法,并指定要删除的三个列名。 示例: 假设我们有一个DataFrame `df`,我们要删除三列:'col1', 'col2', 'col3' 方法一:逐个列名作为参数 new_df = df.drop('col1', 'col2', 'col3') 方法二:使用列表(但需要解包) cols_to_drop = ['col1', 'col2', 'col3'] new_df = df.drop(*cols_to_drop) 但是,在PySpark中,`drop`方法也支持直接传入一个列名列表(从某个版本开始,但为了兼容性,我们通常使用上面的方法一或方法二)。 另外,注意:如果列不存在,默认会抛出异常。我们可以设置`errors`参数来忽略错误: new_df = df.drop('col1', 'col2', 'col3', errors='ignore') 但是,在PySpark中,`drop`方法目前(3.0+版本)支持`errors`参数,设置为'ignore'时,如果列不存在则忽略。 引用说明:用户提供的引用中并没有直接关于PySpark的内容,所以我们需要根据PySpark的知识来回答。 因此,我们给出如下代码示例:</think>在 PySpark 中删除 DataFrame 的指定列,可以使用 `drop()` 方法。以下是详细操作步骤和示例: ### 方法一:直接删除多列(推荐) ```python from pyspark.sql import SparkSession # 创建 SparkSession spark = SparkSession.builder.appName("DropColumns").getOrCreate() # 创建示例 DataFrame data = [("张三", 25, "北京", 15000), ("李四", 30, "上海", 20000)] columns = ["姓名", "年龄", "城市", "薪资"] df = spark.createDataFrame(data, columns) # 删除三列:年龄、城市、薪资 df_dropped = df.drop("年龄", "城市", "薪资") # 查看结果 df_dropped.show() ``` ### 方法二:使用列表删除多列 ```python # 定义要删除的列名列表 columns_to_drop = ["年龄", "城市", "薪资"] # 删除指定列 df_dropped = df.drop(*columns_to_drop) # 注意星号(*)解包列表 ``` ### 方法三:使用 `select()` 反向选择(保留其他列) ```python # 保留除指定列外的所有列 remaining_columns = [col for col in df.columns if col not in ["年龄", "城市", "薪资"]] df_dropped = df.select(*remaining_columns) ``` ### 输出结果 ``` +----+ |姓名| +----+ |张三| |李四| +----+ ``` ### 注意事项 1. **不可变性**:PySpark DataFrame 是不可变的,`drop()` 会返回新 DataFrame,原 DataFrame 保持不变 2. **列不存在处理**:添加 `errors='ignore'` 避免列不存在时报错: ```python df.drop("不存在的列", errors='ignore') ``` 3. **性能考虑**:一次性删除多列比多次删除单列更高效 4. **星号解包**:当使用列表删除时,必须使用 `*` 解包列表[^1] ### 引用说明 > PySpark 的 `drop()` 方法支持同时删除多个列,通过直接传入列名或解包列名列表实现[^1]。与 Pandas 不同,PySpark 操作是惰性的,最终需要触发计算(如 `show()`)才能看到结果[^3]。
阅读全文

相关推荐

import streamlit as st import pandas as pd import numpy as np import joblib import os import time import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.font_manager as fm import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix from sklearn.preprocessing import StandardScaler from imblearn.over_sampling import SMOTE from sklearn.impute import SimpleImputer import warnings warnings.filterwarnings(“ignore”) plt.rcParams[‘font.sans-serif’] = [‘SimHei’] plt.rcParams[‘axes.unicode_minus’] = False # 正确显示负号 页面设置 st.set_page_config( page_title=“风控违约预测系统”, page_icon=“📊”, layout=“wide”, initial_sidebar_state=“expanded” ) 自定义CSS样式 st.markdown(“”" <style> .stApp { background: linear-gradient(135deg, #f5f7fa 0%, #e4edf5 100%); font-family: 'Helvetica Neue', Arial, sans-serif; } .header { background: linear-gradient(90deg, #2c3e50 0%, #4a6491 100%); color: white; padding: 1.5rem; border-radius: 0.75rem; box-shadow: 0 4px 12px rgba(0,0,0,0.1); margin-bottom: 2rem; } .card { background: white; border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; box-shadow: 0 4px 12px rgba(0,0,0,0.08); transition: transform 0.3s ease; } .card:hover { transform: translateY(-5px); box-shadow: 0 6px 16px rgba(0,0,0,0.12); } .stButton button { background: linear-gradient(90deg, #3498db 0%, #1a5276 100%) !important; color: white !important; border: none !important; border-radius: 0.5rem; padding: 0.75rem 1.5rem; font-size: 1rem; font-weight: 600; transition: all 0.3s ease; width: 100%; } .stButton button:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(52, 152, 219, 0.4); } .feature-box { background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); border-radius: 0.75rem; padding: 1.5rem; margin-bottom: 1.5rem; } .result-box { background: linear-gradient(135deg, #e8f5e9 0%, #c8e6c9 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .model-box { background: linear-gradient(135deg, #fff3e0 0%, #ffe0b2 100%); border-radius: 0.75rem; padding: 1.5rem; margin-top: 1.5rem; } .stProgress > div > div > div { background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%) !important; } .metric-card { background: white; border-radius: 0.75rem; padding: 1rem; text-align: center; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .metric-value { font-size: 1.8rem; font-weight: 700; color: #2c3e50; } .metric-label { font-size: 0.9rem; color: #7f8c8d; margin-top: 0.5rem; } .highlight { background: linear-gradient(90deg, #ffeb3b 0%, #fbc02d 100%); padding: 0.2rem 0.5rem; border-radius: 0.25rem; font-weight: 600; } .stDataFrame { border-radius: 0.75rem; box-shadow: 0 4px 8px rgba(0,0,0,0.06); } .risk-high { background-color: #ffcdd2 !important; color: #c62828 !important; font-weight: 700; } .risk-medium { background-color: #fff9c4 !important; color: #f57f17 !important; font-weight: 600; } .risk-low { background-color: #c8e6c9 !important; color: #388e3c !important; } </style> “”", unsafe_allow_html=True) def preprocess_loan_data(data_old): “”" 训练时数据预处理函数,返回处理后的数据和推理时需要的参数 参数: data_old: 原始训练数据 (DataFrame) 返回: processed_data: 预处理后的训练数据 (DataFrame) preprocessor_params: 推理时需要的预处理参数 (dict) “”" # 1. 创建原始数据副本 loan_data = data_old.copy() # 2. 保存要删除的列列表 drop_list = [‘id’,‘member_id’, ‘term’, ‘pymnt_plan’, ‘initial_list_status’, ‘sub_grade’, ‘emp_title’, ‘issue_d’, ‘title’, ‘zip_code’, ‘addr_state’, ‘earliest_cr_line’, ‘last_pymnt_d’, ‘last_credit_pull_d’, ‘url’,‘desc’,‘next_pymnt_d’] loan_data.drop([col for col in drop_list if col in loan_data.columns], axis=1, inplace=True, errors=‘ignore’) # 3. 删除缺失值超过90%的列 #todo 自己补齐删除代码 missing_ratio = loan_data.isnull().sum() / len(loan_data) loan_data.drop(missing_ratio[missing_ratio > 0.9].index, axis=1, inplace=True, errors=‘ignore’) # 4. 删除值全部相同的列 #todo 自己补齐删除代码 constant_cols = loan_data.columns[loan_data.nunique() <= 1] loan_data.drop(constant_cols, axis=1, inplace=True, errors=‘ignore’) # 5. 处理特殊数值列 loans = loan_data # 修正变量名 loans[“int_rate”] = loans[“int_rate”].astype(str).str.rstrip(‘%’).astype(“float”) loans[“revol_util”] = loans[“revol_util”].astype(str).str.rstrip(‘%’).astype(“float”) # 6. 缺失值处理 ## 识别分类列和数值列 objectColumns = loans.select_dtypes(include=[“object”]).columns.tolist() numColumns = loans.select_dtypes(include=[np.number]).columns.tolist() ## 保存分类列的列名 categorical_columns = objectColumns.copy() ## 填充分类变量缺失值 loans[objectColumns] = loans[objectColumns].fillna(“Unknown”) ## 填充数值变量缺失值并保存均值 imr = SimpleImputer(missing_values=np.nan, strategy=“mean”) loans[numColumns] = imr.fit_transform(loans[numColumns]) # 保存数值列的均值 numerical_means = {col: imr.statistics_[i] for i, col in enumerate(numColumns)} # 8. 特征衍生 loans[“installment_feat”] = loans[“installment”] / ((loans[“annual_inc”] + 1) / 12) # 9. 目标变量编码 status_mapping = { “Current”: 0, “Issued”: 0, “Fully Paid”: 0, “In Grace Period”: 1, “Late (31-120 days)”: 1, “Late (16-30 days)”: 1, “Charged Off”: 1, “Does not meet the credit policy. Status:Charged Off”: 1, “Does not meet the credit policy. Status:Fully Paid”: 0, “Default”: 0 } loans[“loan_status”] = loans[“loan_status”].map(status_mapping) # 10. 有序特征映射 mapping_dict = { “emp_length”: { “10+ years”: 10, “9 years”: 9, “8 years”: 8, “7 years”: 7, “6 years”: 6, “5 years”: 5, “4 years”: 4, “3 years”: 3, “2 years”: 2, “1 year”: 1, “< 1 year”: 0, “Unknown”: 0 }, “grade”: { “A”: 1, “B”: 2, “C”: 3, “D”: 4, “E”: 5, “F”: 6, “G”: 7 } } loans = loans.replace(mapping_dict) # 11. One-hot编码 n_columns = [“home_ownership”, “verification_status”, “purpose”, “application_type”] dummy_df = pd.get_dummies(loans[n_columns], drop_first=False) loans = pd.concat([loans, dummy_df], axis=1) loans.drop(n_columns, axis=1, inplace=True) # 保存One-hot编码后的列名 onehot_columns = n_columns onehot_encoder_columns = dummy_df.columns.tolist() # 12. 特征缩放 # 识别需要缩放的数值列 numeric_cols = loans.select_dtypes(include=[“int”, “float”]).columns.tolist() if ‘loan_status’ in numeric_cols: numeric_cols.remove(‘loan_status’) # 创建并拟合缩放器 sc = StandardScaler() if numeric_cols: loans[numeric_cols] = sc.fit_transform(loans[numeric_cols]) # 保存缩放列名 scaled_columns = numeric_cols # 13. 保存最终列结构(在SMOTE之前) #final_columns = loans.columns.tolist().remove(‘loan_status’) final_columns = loans.columns[loans.columns != ‘loan_status’].tolist() # 14. 处理不平衡数据(SMOTE过采样) X = loans.drop(“loan_status”, axis=1) y = loans[“loan_status”] os = SMOTE(random_state=42) X_res, y_res = os.fit_resample(X, y) # 15. 合并为最终DataFrame processed_data = pd.concat([X_res, y_res], axis=1) processed_data.columns = list(X.columns) + [“loan_status”] # 16. 创建推理时需要的参数字典 preprocessor_params = { # 1. 删除的列 ‘drop_list’: drop_list, # 2. 分类列缺失值填充 ‘categorical_columns’: categorical_columns, # 3. 数值列填充均值 ‘numerical_means’: numerical_means, # 4. 有序特征映射 ‘mapping_dict’: mapping_dict, # 5. One-hot配置 ‘onehot_columns’: onehot_columns, ‘onehot_encoder_columns’: onehot_encoder_columns, # 6. 缩放器及缩放列 ‘scaler’: sc, # 已拟合的StandardScaler实例 ‘scaled_columns’: scaled_columns, # 7. 最终列结构(训练后的列顺序) ‘final_columns’: final_columns } return processed_data, preprocessor_params def preprocess_loan_data_inference(data_old, preprocessor_params): “”" 推理时数据处理函数 参数: data_old: 原始推理数据 (DataFrame) preprocessor_params: 从训练过程保存的预处理参数 (dict) 返回: processed_data: 预处理后的推理数据 (DataFrame) “”" # 1. 复制数据避免污染原始数据 loanss = data_old.copy() # 2. 删除训练时确定的列 drop_list = preprocessor_params[‘drop_list’] loans = loanss.drop(columns=[col for col in drop_list if col in loanss.columns], axis=1, errors=‘ignore’) # 3. 处理特殊数值列(百分比转换) if ‘int_rate’ in loans: loans[“int_rate”] = loans[“int_rate”].astype(str).str.rstrip(‘%’).astype(“float”) if ‘revol_util’ in loans: loans[“revol_util”] = loans[“revol_util”].astype(str).str.rstrip(‘%’).astype(“float”) # 4. 特征衍生(使用训练时相同公式) if ‘installment’ in loans and ‘annual_inc’ in loans: loans[“installment_feat”] = loans[“installment”] / ((loans[“annual_inc”] + 1) / 12) # 5. 有序特征映射(使用训练时的映射字典) mapping_dict = preprocessor_params[‘mapping_dict’] for col, mapping in mapping_dict.items(): if col in loans: # 处理未知值,默认为0 loans[col] = loans[col].map(mapping).fillna(0).astype(int) # 6. 缺失值处理(使用训练时保存的策略) # 分类变量 cat_cols = preprocessor_params[‘categorical_columns’] for col in cat_cols: if col in loans: loans[col] = loans[col].fillna(“Unknown”) # 数值变量(使用训练时保存的均值) num_means = preprocessor_params[‘numerical_means’] for col, mean_value in num_means.items(): if col in loans: loans[col] = loans[col].fillna(mean_value) # 7. One-hot编码(对齐训练时的列结构) n_columns = preprocessor_params[‘onehot_columns’] expected_dummy_columns = preprocessor_params[‘onehot_encoder_columns’] # 创建空DataFrame用于存储结果 dummy_df = pd.DataFrame(columns=expected_dummy_columns) # 为每个分类列生成dummy变量 for col in n_columns: if col in loans: # 为当前列生成dummies col_dummies = pd.get_dummies(loans[col], prefix=col) # 对齐训练时的列结构 for expected_col in expected_dummy_columns: if expected_col in col_dummies: dummy_df[expected_col] = col_dummies[expected_col] else: # 如果该列不存在,则创建全0列 dummy_df[expected_col] = 0 # 合并dummy变量 loans = pd.concat([loans, dummy_df], axis=1) # 删除原始分类列 loans.drop(columns=[col for col in n_columns if col in loans.columns], inplace=True, errors=‘ignore’) # 8. 特征缩放(使用训练时的缩放器参数) sc = preprocessor_params[‘scaler’] scaled_cols = [col for col in preprocessor_params[‘scaled_columns’] if col in loans.columns] if scaled_cols: loans[scaled_cols] = sc.transform(loans[scaled_cols]) # 9. 对齐最终特征列(确保与训练数据相同) final_columns = preprocessor_params[‘final_columns’] # 添加缺失列(用0填充) for col in final_columns: if col not in loans.columns: loans[col] = 0 # 移除多余列并保持顺序 processed_data = loans[final_columns] print(loans.columns) return processed_data 标题区域 st.markdown(“”" 风控违约预测系统 基于机器学习的信贷风险评估与预测 """, unsafe_allow_html=True) 页面布局 col1, col2 = st.columns([1, 1.5]) 左侧区域 - 图片和简介 with col1: st.markdown(“”" 智能风控系统 利用先进机器学习技术预测信贷违约风险 “”", unsafe_allow_html=True) 使用在线图片作为占位符 st.image(“https://images.unsplash.com/photo-1553877522-43269d4ea984?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=1200&q=80”, caption=“智能风控系统示意图”, use_column_width=True) st.markdown(“”" 📈 系统功能 客户违约风险预测 高精度机器学习模型 可视化风险评估 批量数据处理 “”", unsafe_allow_html=True) 右侧区域 - 功能选择 with col2: st.markdown(“”" 请选择操作类型 您可以选择训练新模型或使用现有模型进行预测 “”", unsafe_allow_html=True) 功能选择 option = st.radio(“”, [“🚀 训练新模型 - 使用新数据训练预测模型”, “🔍 推理预测 - 使用模型预测违约风险”], index=0, label_visibility=“hidden”) # 模型训练部分 if “训练新模型” in option: st.markdown(“”" 模型训练 上传训练数据并训练新的预测模型 “”“, unsafe_allow_html=True) # 上传训练数据 train_file = st.file_uploader(“上传训练数据 (CSV格式)”, type=[“csv”]) if train_file is not None: try: # 读取数据 train_data_old = pd.read_csv(train_file) # 显示数据预览 with st.expander(“数据预览”, expanded=True): st.dataframe(train_data_old.head()) col1, col2, col3 = st.columns(3) col1.metric(“总样本数”, train_data_old.shape[0]) col2.metric(“特征数量”, train_data_old.shape[1] - 1) # 训练参数设置 st.subheader(“训练参数”) col1, col2 = st.columns(2) test_size = col1.slider(“测试集比例”, 0.1, 0.4, 0.2, 0.1) n_estimators = col2.slider(“树的数量”, 10, 500, 100, 10) max_depth = col1.slider(“最大深度”, 2, 30, 10, 1) random_state = col2.number_input(“随机种子”, 0, 100, 42) # 开始训练按钮 if st.button(“开始训练模型”, use_container_width=True): with st.spinner(“模型训练中,请稍候…”): # 模拟数据处理 progress_bar = st.progress(0) train_data,preprocessor_params = preprocess_loan_data(train_data_old) joblib.dump(preprocessor_params, ‘loan_preprocessor_params.pkl’) # 步骤1: 数据预处理 time.sleep(1) progress_bar.progress(25) st.success(”✅ 数据预处理完成") # 步骤2: 特征工程 time.sleep(1) progress_bar.progress(50) st.success(“✅ 特征工程完成”) # 步骤3: 模型训练 time.sleep(2) progress_bar.progress(75) # 实际训练代码 (简化版) X = train_data.drop(“loan_status”, axis=1) y = train_data[“loan_status”] # 划分训练测试集 #todo 自己补齐数据划分代码 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state, stratify=y) # 训练模型 #todo 自己补齐调用随机森林算法完成模型的训练 model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, random_state=random_state, n_jobs=-1) model.fit(X_train, y_train) # 保存模型 joblib.dump(model, “risk_model.pkl”) # 步骤4: 模型评估 time.sleep(1) progress_bar.progress(100) # 评估模型 #todo 自己补齐调用预测函数完成测试集推理预测 y_pred = model.predict(X_test) y_proba = model.predict_proba(X_test)[:, 1] accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_proba) # 保存评估结果 st.session_state.model_trained = True st.session_state.accuracy = accuracy st.session_state.auc = auc st.session_state.y_test = y_test st.session_state.y_pred = y_pred st.success(“🎉 模型训练完成!”) # 显示模型性能 st.subheader(“模型性能评估”) col1, col2 = st.columns(2) col1.markdown(f"“” {accuracy*100:.1f}% 准确率 “”“, unsafe_allow_html=True) col2.markdown(f”“” {auc:.3f} AUC 分数 “”“, unsafe_allow_html=True) # 混淆矩阵 st.subheader(“混淆矩阵”) cm = confusion_matrix(y_test, y_pred) fig, ax = plt.subplots(figsize=(6, 4)) sns.heatmap(cm, annot=True, fmt=“d”, cmap=“Blues”, ax=ax) ax.set_xlabel(“预测标签”) ax.set_ylabel(“真实标签”) ax.set_title(“混淆矩阵”) st.pyplot(fig) # 特征重要性 st.subheader(“特征重要性”) feature_importance = pd.DataFrame({ “特征”: X.columns, “重要性”: model.feature_importances_ }).sort_values(“重要性”, ascending=False).head(10) fig, ax = plt.subplots(figsize=(10, 6)) sns.barplot(x=“重要性”, y=“特征”, data=feature_importance, palette=“viridis”, ax=ax) ax.set_title(“Top 10 重要特征”) st.pyplot(fig) except Exception as e: st.error(f"数据处理错误: {str(e)}”) # 推理预测部分 else: st.markdown(“”" 风险预测 上传需要预测的数据,生成违约风险评估报告 “”“, unsafe_allow_html=True) # 上传预测数据 predict_file = st.file_uploader(“上传预测数据 (CSV格式)”, type=[“csv”]) if predict_file is not None: try: # 读取数据 predict_data = pd.read_csv(predict_file) # 显示数据预览 with st.expander(“数据预览”, expanded=True): st.dataframe(predict_data.head()) st.info(f"数据集包含 {predict_data.shape[0]} 个样本,{predict_data.shape[1]} 个特征”) # 检查是否有模型 if not os.path.exists(“risk_model.pkl”): st.warning(“⚠️ 未找到训练好的模型,请先训练模型或使用示例数据”) # 使用示例模型 if st.button(“使用示例模型进行预测”, use_container_width=True): st.info(“正在使用预训练的示例模型进行预测…”) # 创建示例模型 X = np.random.rand(100, 10) y = np.random.randint(0, 2, 100) model = RandomForestClassifier(n_estimators=50, random_state=42) model.fit(X, y) # 生成预测结果 predictions = model.predict(predict_data.values) probas = model.predict_proba(predict_data.values)[:, 1] # 创建结果DataFrame result_df = pd.DataFrame({ “客户ID”: predict_data[“member_id”], “违约概率”: probas, “预测标签”: predictions }) # 添加风险等级 result_df[“风险等级”] = pd.cut( result_df[“违约概率”], bins=[0, 0.2, 0.5, 1], labels=[“低风险”, “中风险”, “高风险”], include_lowest=True ) # 保存结果 st.session_state.prediction_results = result_df else: # 加载模型 model = joblib.load(“risk_model.pkl”) preprocessor_params = joblib.load(‘loan_preprocessor_params.pkl’) # 开始预测按钮 if st.button(“开始风险预测”, use_container_width=True): with st.spinner(“预测进行中,请稍候…”): # 模拟预测过程 progress_bar = st.progress(0) # 预处理推理数据 #todo 自己补齐调用推理数据处理函数完成推理数据的清洗 processed_inference = preprocess_loan_data_inference(predict_data, preprocessor_params) # 步骤1: 数据预处理 time.sleep(1) progress_bar.progress(25) # 步骤2: 特征工程 time.sleep(1) progress_bar.progress(50) # 步骤3: 模型预测 time.sleep(1) progress_bar.progress(75) # 生成预测结果 predictions = model.predict(processed_inference.values) probas = model.predict_proba(processed_inference.values)[:, 1] # 创建结果DataFrame result_df = pd.DataFrame({ “客户ID”: predict_data[“member_id”], “违约概率”: probas, “预测标签”: predictions }) # 添加风险等级 result_df[“风险等级”] = pd.cut( result_df[“违约概率”], bins=[0, 0.2, 0.5, 1], labels=[“低风险”, “中风险”, “高风险”], include_lowest=True ) # 步骤4: 生成报告 time.sleep(1) progress_bar.progress(100) # 保存结果 st.session_state.prediction_results = result_df st.success(“✅ 预测完成!”) except Exception as e: st.error(f"预测错误: {str(e)}“) # 显示预测结果 if “prediction_results” in st.session_state: st.markdown(”“” 预测结果 客户违约风险评估报告 “”“, unsafe_allow_html=True) result_df = st.session_state.prediction_results # 风险分布 st.subheader(“风险分布概览”) col1, col2, col3 = st.columns(3) high_risk = (result_df[“风险等级”] == “高风险”).sum() med_risk = (result_df[“风险等级”] == “中风险”).sum() low_risk = (result_df[“风险等级”] == “低风险”).sum() col1.markdown(f”“” {high_risk} 高风险客户 “”“, unsafe_allow_html=True) col2.markdown(f”“” {med_risk} 中风险客户 “”“, unsafe_allow_html=True) col3.markdown(f”“” {low_risk} 低风险客户 “”“, unsafe_allow_html=True) # 风险分布图 fig, ax = plt.subplots(figsize=(8, 4)) risk_counts = result_df[“风险等级”].value_counts() risk_counts.plot(kind=“bar”, color=[”#4CAF50", “#FFC107”, “#F44336”], ax=ax) ax.set_title(“客户风险等级分布”) ax.set_xlabel(“风险等级”) ax.set_ylabel(“客户数量”) st.pyplot(fig) # 详细预测结果 st.subheader(“详细预测结果”) # 样式函数 def color_risk(val): if val == “高风险”: return “background-color: #ffcdd2; color: #c62828;” elif val == “中风险”: return “background-color: #fff9c4; color: #f57f17;” else: return “background-color: #c8e6c9; color: #388e3c;” # 格式化显示 styled_df = result_df.style.applymap(color_risk, subset=[“风险等级”]) st.dataframe(styled_df.format({ “违约概率”: “{:.2%}” }), height=400) # 下载结果 csv = result_df.to_csv(index=False).encode(“utf-8”) st.download_button( label=“下载预测结果”, data=csv, file_name=“风险预测结果.csv”, mime=“text/csv”, use_container_width=True ) 页脚 st.markdown(“—”) st.markdown(“”" © 2023 风控违约预测系统 | 基于Streamlit开发 """, unsafe_allow_html=True) 根据如上代码,仿照如下要求,给出结果完整代码 大数据挖掘:精准营销 一、题目背景 某电信运营商为提升用户 ARPU(每用户平均收入),计划对单宽带用户推广 “单宽转融” 业务(即单宽带用户加装移动网业务,形成融合套餐)。为实现精准营销,需通过数据挖掘技术预测单宽带用户转化为融合套餐用户的可能性,从而针对性制定营销策略。现有一批单宽带用户的行为数据,要求通过数据分析和建模,构建高效的预测模型,辅助运营决策。 二、数据集介绍 1、数据来源:某运营商单宽转融用户的历史数据,包含用户基础信息、资费信息、电信行为数据、客户标签及 DPI 上网行为数据。 2、数据规模:50万+条记录,100+个字段。 3、关键字段说明: 1)用户属性:AGE(年龄),GENDER(性别),ONLINE_DAY(在网天数) 2)消费行为:STMT_AMT(出账金额),PROM_AMT(套餐价格),AVG_STMT_AMT(月均消费) 3)网络使用:DUR(上网时长),DWN_VOL(下载流量),TERM_CNT(接入终端数) 4)业务标签:IF_YHTS(是否投诉),MKT_STAR_GRADE_NAME(用户星级) 5)目标变量(标签):is_rh_next,表示用户是否转为融合套餐(1 为转化,0 为未转化)。 三、题目要求 1、使用 Python 进行数据分析与预处理: 1)加载数据并检查数据质量(缺失值、异常值)。 2)进行特征工程:删除无意义特征、处理缺失值、离散特征编码、标准化 / 归一化。 3)可视化数据分布,分析关键特征与目标变量的相关性。 2、使用 Spark 进行模型训练与测试: 1)构建逻辑回归、决策树、随机森林三种模型。 2)调优模型参数,对比评估指标(准确率、召回率、F1 值、AUC)。 3)选择最优模型,并解释特征重要性。 3、输出要求: 1)给出数据预处理的关键步骤及代码。 2)展示各模型的训练结果与对比分析。 3)说明最终选择的模型及理由。 数据集文件名为Single_breadth_to_melt.csv 文件为gbk编码前一百行数据为 BIL_MONTH ASSET_ROW_ID CCUST_ROW_ID BELONG_CITY MKT_CHANNEL_NAME MKT_CHANNEL_SUB_NAME PREPARE_FLG SERV_START_DT COMB_STAT_NAME FIBER_ACCESS_CATEGORY … AVG_STMT_AMT_LV is_kdts is_itv_up is_mobile_up if_zzzw_up itv_cnt itv_day serv_in_time PROM_AMT_MONTH is_rh_next 0 201706 1-1E6Z49HF 1-UTSNWVU 杭州 NaN 其它部门-未知部门细分-未知 … 0 20140126 现行 普通宽带 … c30-59 0 0 0 0 0 0 41 44.44 0.0 1 201706 3-J591KYI 1-LKFKET 杭州 NaN 其它部门-未知部门细分-未知 … 0 20160406 现行 普通宽带 … e89-129 0 0 0 0 0 0 14 100.00 0.0 2 201706 1-F3YGP4D 1-6T16M75 杭州 营业厅 营业厅-营业服务中心-城市 … 0 20100112 现行 普通宽带 … c30-59 0 0 0 0 0 28 89 44.44 0.0 3 201706 1-1AITRLCN 1-1AB5KV9U 杭州 NaN 其它部门-未知部门细分-未知 … 0 20131017 现行 普通宽带 … c30-59 1 0 0 0 0 10 44 55.56 0.0 4 201706 1-132ZSIVX 1-LPVY5O 杭州 10000号 其它部门-10000客服部-城市 … 0 20130209 现行 普通宽带 … d59-89 0 0 0 0 0 0 52 0.00 0.0

最新推荐

recommend-type

工业自动化领域中步科触摸屏与台达VFD-M变频器通讯实现电机控制功能 - 电机控制

内容概要:本文档详细介绍了使用步科触摸屏和台达VFD-M变频器实现电机控制功能的技术细节。主要内容涵盖所需的硬件配置(如步科T070触摸屏和支持485功能的USB转485转换头),以及具体的功能实现方法,包括正反转控制、点动停止、频率设定、运行频率读取、电流电压和运行状态的监控。此外,还强调了通讯协议的重要性及其具体实施步骤。 适用人群:从事工业自动化领域的工程师和技术人员,特别是那些负责电机控制系统设计和维护的专业人士。 使用场景及目标:适用于需要集成步科触摸屏与台达VFD-M变频器进行电机控制的应用场合,旨在帮助技术人员掌握正确的硬件选型、安装配置及编程技巧,从而确保系统的稳定性和可靠性。 其他说明:文中提到的操作流程和注意事项有助于避免常见的错误并提高工作效率。同时,提供了详细的通讯说明,确保不同设备之间的兼容性和数据传输的准确性。
recommend-type

langchain4j-community-core-1.0.0-beta4.jar中文-英文对照文档.zip

1、压缩文件中包含: 中文-英文对照文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文-英文对照文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

Webdiy.net新闻系统v1.0企业版发布:功能强大、易操作

标题中提到的"Webdiy.net新闻系统 v1.0 企业版"是一个针对企业级应用开发的新闻内容管理系统,是基于.NET框架构建的。从描述中我们可以提炼出以下知识点: 1. **系统特性**: - **易用性**:系统设计简单,方便企业用户快速上手和操作。 - **可定制性**:用户可以轻松修改网站的外观和基本信息,例如网页标题、页面颜色、页眉和页脚等,以符合企业的品牌形象。 2. **数据库支持**: - **Access数据库**:作为轻量级数据库,Access对于小型项目和需要快速部署的场景非常合适。 - **Sql Server数据库**:适用于需要强大数据处理能力和高并发支持的企业级应用。 3. **性能优化**: - 系统针对Access和Sql Server数据库进行了特定的性能优化,意味着它能够提供更为流畅的用户体验和更快的数据响应速度。 4. **编辑器功能**: - **所见即所得编辑器**:类似于Microsoft Word,允许用户进行图文混排编辑,这样的功能对于非技术人员来说非常友好,因为他们可以直观地编辑内容而无需深入了解HTML或CSS代码。 5. **图片管理**: - 新闻系统中包含在线图片上传、浏览和删除的功能,这对于新闻编辑来说是非常必要的,可以快速地为新闻内容添加相关图片,并且方便地进行管理和更新。 6. **内容发布流程**: - **审核机制**:后台发布新闻后,需经过审核才能显示到网站上,这样可以保证发布的内容质量,减少错误和不当信息的传播。 7. **内容排序与类别管理**: - 用户可以按照不同的显示字段对新闻内容进行排序,这样可以突出显示最新或最受欢迎的内容。 - 新闻类别的动态管理及自定义显示顺序,可以灵活地对新闻内容进行分类,方便用户浏览和查找。 8. **前端展示**: - 系统支持Javascript前端页面调用,这允许开发者将系统内容嵌入到其他网页或系统中。 - 支持iframe调用,通过这种HTML元素可以将系统内容嵌入到网页中,实现了内容的跨域展示。 9. **安全性**: - 提供了默认的管理账号和密码(webdiy / webdiy.net),对于企业应用来说,这些默认的凭证需要被替换,以保证系统的安全性。 10. **文件结构**: - 压缩包文件名称为"webdiynetnews",这可能是系统的根目录名称或主要安装文件。 11. **技术栈**: - 系统基于ASP.NET技术构建,这表明它使用.NET框架开发,并且可以利用.NET生态中的各种库和工具来实现功能的扩展和维护。 在实施和部署这样的系统时,企业可能还需要考虑以下方面: - **可扩展性**:随着业务的增长,系统应该能容易地扩展,以支持更多的用户和内容。 - **安全性**:除了更改为安全的管理员凭证外,还需考虑防止SQL注入、XSS攻击等网络安全问题。 - **备份和恢复**:定期备份数据库和内容是很重要的,以防数据丢失或需要恢复到先前的状态。 - **多用户和权限管理**:企业环境可能需要多级用户权限设置,以适应不同的团队和角色。 - **SEO优化**:系统应支持良好的搜索引擎优化实践,以便于内容在搜索引擎中的排名和发现。 - **移动适应性**:由于移动设备的广泛使用,系统应具备良好的响应式设计,以提供良好的移动用户体验。 根据描述,该系统似乎是一个成熟的解决方案,适用于需要快速搭建新闻网站的企业用户,但同时也应该注意定期的维护和更新,以确保系统的稳定性和安全性。
recommend-type

【Windows 11用户的福音】:一步到位解决GX Works2安装问题,让兼容性不再是问题!

# 1. GX Works2简介与Windows 11兼容性问题 ## 简介GX Works2 GX Works2是由三菱电机开发的一款针对其PLC(可编程逻辑控制器)产品的编程和调试软件。该软件以其直观的用户界面和强大的编程功能闻名于工业自动化领域,支持从简单的逻辑控制到复杂的系统集成项目。随着Windows操作系统的迭代升级,尤其是新推
recommend-type

电磁加热双边谐振和单边谐振的区别

<think>我们正在处理关于电磁加热技术中双边谐振与单边谐振的工作原理及区别的问题。 首先,需要明确用户意图是了解这两种谐振方式的区别以及它们的工作原理。 我们将通过以下步骤进行: 1. 调用网络搜索工具,检索关于电磁加热中双边谐振和单边谐振的信息。 2. 整合检索到的内容,按照要求生成回答,包括工作原理和区别,并组织成多个方法或步骤(但避免使用步骤词汇,用换行分隔)。 3. 在回答中,如果有公式或代码,按照指定格式处理。 4. 最后,添加相关问题部分。 注意:避免使用第一人称,避免步骤词汇,引用内容不集中末尾,而是融入回答中。 根据搜索,电磁加热中的谐振通常指的是感应加
recommend-type

EnvMan源代码压缩包内容及功能解析

根据给定文件信息,我们需要生成关于“EnvMan-source.zip”这一压缩包的知识点。首先,由于提供的信息有限,我们无法直接得知EnvMan-source.zip的具体内容和功能,但可以通过标题、描述和标签中的信息进行推断。文件名称列表只有一个“EnvMan”,这暗示了压缩包可能包含一个名为EnvMan的软件或项目源代码。以下是一些可能的知识点: ### EnvMan软件/项目概览 EnvMan可能是一个用于环境管理的工具或框架,其源代码被打包并以“EnvMan-source.zip”的形式进行分发。通常,环境管理相关的软件用于构建、配置、管理和维护应用程序的运行时环境,这可能包括各种操作系统、服务器、中间件、数据库等组件的安装、配置和版本控制。 ### 源代码文件说明 由于只有一个名称“EnvMan”出现在文件列表中,我们可以推测这个压缩包可能只包含一个与EnvMan相关的源代码文件夹。源代码文件夹可能包含以下几个部分: - **项目结构**:展示EnvMan项目的基本目录结构,通常包括源代码文件(.c, .cpp, .java等)、头文件(.h, .hpp等)、资源文件(图片、配置文件等)、文档(说明文件、开发者指南等)、构建脚本(Makefile, build.gradle等)。 - **开发文档**:可能包含README文件、开发者指南或者项目wiki,用于说明EnvMan的功能、安装、配置、使用方法以及可能的API说明或开发者贡献指南。 - **版本信息**:在描述中提到了版本号“-1101”,这表明我们所见的源代码包是EnvMan的1101版本。通常版本信息会详细记录在版本控制文件(如ChangeLog或RELEASE_NOTES)中,说明了本次更新包含的新特性、修复的问题、已知的问题等。 ### 压缩包的特点 - **命名规范**:标题、描述和标签中的一致性表明这是一个正式发布的软件包。通常,源代码包的命名会遵循一定的规范,如“项目名称-版本号-类型”,在这里类型是“source”。 - **分发形式**:以.zip格式的压缩包进行分发,是一种常见的软件源代码分发方式。虽然较现代的版本控制系统(如Git、Mercurial)通常支持直接从仓库克隆源代码,但打包成zip文件依然是一种便于存储和传输的手段。 ### 可能的应用场景 - **开发环境配置**:EnvMan可能是用于创建、配置和管理开发环境的工具,这种工具在开发人员设置新的开发机或新的项目环境时非常有用。 - **自动化部署**:EnvMan可能包含自动化部署环境的脚本或命令,使得部署流程变得快捷且高效。 - **监控与维护**:作为环境管理工具,EnvMan可能还支持对环境的监控功能,包括系统资源监控、服务状态检查等,以保证生产环境的稳定性。 ### 总结 尽管以上知识点是基于有限的信息进行的假设性推论,但EnvMan-source.zip包可能是一个用于环境管理的软件或项目的源代码包。该软件或项目可能包含构建和部署自动化环境的能力,以及对运行时环境的监控和维护。文件命名的一致性暗示这是一个正式的版本发布。如果要深入了解EnvMan的功能与用法,建议直接查看压缩包中的文档或源代码注释。同时,考虑到源代码的开发,我们还应该探究该项目所使用的技术栈、编程语言以及版本控制工具等,这将有助于进一步了解EnvMan的技术细节。
recommend-type

【Windows 11终极解决方案】:彻底攻克GX Works2安装中难缠的.Net Framework 3.5障碍!

# 1. Windows 11与GX Works2简介 ## 1.1 Windows 11操作系统概览 Windows 11,作为微软最新的操作系统,不仅仅提供了一种现代的用户体验,而且加强了在企业环境中的安全性与生产力工具。其引入了全新的界面设计、改进的多任务处理以及对Android应用的支持,使它成为IT专业人
recommend-type

贝叶斯gmm

<think>首先,用户的问题是关于贝叶斯高斯混合模型(Bayesian Gaussian Mixture Model, BGMM)的原理和应用。我需要根据系统指令来构建回答。 系统指令包括: - 所有行内数学表达式使用 `$...$` 格式。 - 独立公式使用 `$$...$$` 格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 在回答中引用的段落末尾自然地添加引用标识,如 `[^1]`。 - 回答结构清晰,帮助用户逐步解决问题。 - 保证回答真实可靠。 参考提供的引用: - 引用[1]:讨论了高斯混合模型在机器学习中的应用,包括其优点和挑战。 -
recommend-type

威海卫国旅游网美化版网站建设意向表下载

根据提供的文件信息,我们可以提取以下知识点: 1. 网站建设意向表概念: 网站建设意向表是指在网站开发过程中,客户或项目负责人填写的一份表单,用以明确表达网站建设的需求、目标、功能、风格偏好等关键信息。它是项目开发前期沟通的载体,确保开发团队能够准确理解客户需求并据此进行网站设计和功能实现。 2. 美化版的含义: 美化版通常指的是对原有产品、设计或界面进行视觉上的改进,使之更加吸引人和用户体验更佳。在网站建设的上下文中,美化版可能指对网站的设计元素、布局、色彩搭配等进行更新和优化,从而提高网站的美观度和用户交互体验。 3. 代码和CSS的优化: 代码优化:指的是对网站的源代码进行改进,包括但不限于提高代码的执行效率、减少冗余、提升可读性和可维护性。这可能涉及代码重构、使用更高效的算法、减少HTTP请求次数等技术手段。 CSS优化:层叠样式表(Cascading Style Sheets, CSS)是一种用于描述网页呈现样式的语言。CSS优化可能包括对样式的简化、合并、压缩,使用CSS预处理器、应用媒体查询以实现响应式设计,以及采用更高效的选择器减少重绘和重排等。 4. 网站建设实践: 网站建设涉及诸多实践,包括需求收集、网站规划、设计、编程、测试和部署。其中,前端开发是网站建设中的重要环节,涉及HTML、CSS和JavaScript等技术。此外,还需要考虑到网站的安全性、SEO优化、用户体验设计(UX)、交互设计(UI)等多方面因素。 5. 文件描述中提到的威海卫国旅游网: 威海卫国旅游网可能是一个以威海地区旅游信息为主题的网站。网站可能提供旅游景点介绍、旅游服务预订、旅游攻略分享等相关内容。该网站的这一项目表明,他们关注用户体验并致力于提供高质量的在线服务。 6. 文件标签的含义: 文件标签包括“下载”、“源代码”、“源码”、“资料”和“邮件管理类”。这些标签说明该压缩文件中包含了可以下载的资源,具体内容是网站相关源代码以及相关的开发资料。另外,提到“邮件管理类”可能意味着在网站项目中包含了用于处理用户邮件订阅、通知、回复等功能的代码或模块。 7. 压缩文件的文件名称列表: 该文件的名称为“网站建设意向表 美化版”。从文件名称可以推断出该文件是一个表单,用于收集网站建设相关需求,且经过了视觉和界面的改进。 综合上述内容,可以得出结论,本表单文件是一个为特定网站建设项目设计的需求收集工具,经过技术优化并美化了用户界面,旨在提升用户体验,并且可能包含了邮件管理功能,方便网站运营者与用户进行沟通。该文件是一份宝贵资源,尤其是对于需要进行网站建设或优化的开发者来说,可以作为参考模板或直接使用。
recommend-type

【FPGA设计高手必读】:高效除法的实现与基2 SRT算法优化

# 1. FPGA设计中的高效除法基础 ## 为何高效除法在FPGA设计中至关重要 在数字电路设计领域,尤其是在现场可编程门阵列(FPGA)中,高效的除法器设计对于实现高性能运算至关重要。由于除法运算相对复杂,其硬件实现往往涉及大量的逻辑门和触发器,消耗的资源和执行时间较多。因此,开发者必须设计出既高效又节省资源的除法器,以适应FPGA设计的性能和资源限制。此外,随着应用领域对计算速度和精度要求的不断提升,传统算法无法满足新需求,这就推动了高效除法算法的研究与发展。 ## 高效除法实现的挑战 实现FPGA设计中的高效除法,面临着诸多挑战。首先,除法操作的固有延迟限制了整体电路的性能;其