D:\python\space\.venv\Scripts\python.exe D:\python\space\8\6.py Traceback (most recent call last): File "D:\python\space\8\6.py", line 139, in <module> shortest_path, shortest_path_length = ant_colony.run() ^^^^^^^^^^^^^^^^ File "D:\python\space\8\6.py", line 39, in run all_paths = self.gen_all_paths() ^^^^^^^^^^^^^^^^^^^^ File "D:\python\space\8\6.py", line 61, in gen_all_paths path = self.gen_path() ^^^^^^^^^^^^^^^ File "D:\python\space\8\6.py", line 73, in gen_path next_city = self.pick_city(prev, visited) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "D:\python\space\8\6.py", line 98, in pick_city next_city = np.random.choice(range(len(self.distances)), 1, p=norm_row)[0] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "numpy\\random\\mtrand.pyx", line 994, in numpy.random.mtrand.RandomState.choice ValueError: probabilities do not sum to 1
时间: 2025-05-27 19:53:53 浏览: 23
<think>好的,用户遇到了蚁群算法实现中的ValueError:probabilities donot sumto1错误。这个问题通常发生在概率分布的总和不为1的时候,导致numpy的random.choice函数无法正确选择。我需要仔细分析代码,找出哪里可能导致概率和不为1的情况。首先,用户提供的代码中,pick_city方法负责选择下一个城市。在计算norm_row时,可能存在行全零的情况,或者在归一化时没有正确处理。例如,当所有未访问的城市的信息素和启发式值的乘积为零时,row.sum()可能为零,导致除以零的错误,进而生成NaN或无效的概率。在之前的修改中,已经添加了处理全零行的代码,但可能还存在遗漏。比如,当row.sum()为零时,虽然尝试设置为1,但可能没有覆盖所有情况。需要检查这部分逻辑,确保在row.sum()为零时,能够正确生成有效的概率分布。
此外,用户可能在处理启发式信息时,没有考虑到距离为零的情况,导致计算中出现除以零的错误。在calc_distances函数中,虽然已经添加了处理零距离的代码,但可能某些情况下仍然存在极小值,导致heuristic计算不稳定。
另一个可能性是,在生成norm_row时,即使row.sum()不为零,但由于浮点数精度问题,实际总和略微偏离1,导致概率和不为1。这时候需要增加一个归一化的容差,确保概率总和严格为1。
解决方案可能包括:在计算norm_row之前,确保row的总和不为零;在归一化时添加一个极小值防止除以零;以及在生成概率分布后,手动调整使其总和为1。需要修改pick_city方法中的逻辑,确保在所有情况下都能生成有效的概率分布。例如,当所有未访问的城市的概率为零时,随机选择一个可用城市;或者在归一化时使用更稳定的方法。最后,测试修改后的代码,确保在各种情况下都能正确生成概率分布,避免ValueError的出现。</think>以下是修复概率和不等于1问题的完整代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
def calc_distance(city1, city2):
return np.linalg.norm(np.array(city1) - np.array(city2))
def calc_distances(cities):
n_cities = len(cities)
distances = np.zeros((n_cities, n_cities))
for i in range(n_cities):
for j in range(i + 1, n_cities):
dist = calc_distance(cities[i], cities[j])
if dist == 0: # 确保距离不为零
dist = 1e-10
distances[i][j] = distances[j][i] = dist
return distances
class AntColony:
def __init__(self, distances, n_ants, n_iterations, decay, alpha=1, beta=5, rho=0.1, Q=1):
self.distances = distances
self.pheromone = np.ones_like(distances) / len(distances)
self.n_ants = n_ants
self.n_iterations = n_iterations
self.decay = decay
self.alpha = alpha
self.beta = beta
self.rho = rho
self.Q = Q
self.shortest_path_lengths = []
def run(self):
shortest_path = None
shortest_path_length = np.inf
for _ in range(self.n_iterations):
all_paths = self.gen_all_paths()
self.spread_pheromone(all_paths)
shortest_path, shortest_path_length = self.get_shortest(all_paths, shortest_path, shortest_path_length)
self.pheromone *= (1 - self.rho)
self.shortest_path_lengths.append(shortest_path_length)
return shortest_path, shortest_path_length
def spread_pheromone(self, all_paths):
for path in all_paths:
for move in path:
self.pheromone[move] += self.Q / (self.distances[move] + 1e-10)
def gen_path_dist(self, path):
total = 0
for move in path:
total += self.distances[move]
return total
def gen_all_paths(self):
all_paths = []
for _ in range(self.n_ants):
path = self.gen_path()
if path: # 过滤无效路径
all_paths.append(path)
return all_paths
def gen_path(self):
n_cities = len(self.distances)
path = []
visited = set()
start = np.random.randint(n_cities)
visited.add(start)
prev = start
for _ in range(n_cities - 1):
next_city = self.pick_city(prev, visited)
if next_city is None: # 处理无法选择城市的情况
return []
path.append((prev, next_city))
prev = next_city
visited.add(next_city)
path.append((prev, start))
return path
def pick_city(self, prev, visited):
pheromone = np.copy(self.pheromone[prev])
pheromone[list(visited)] = 0
# 计算启发式信息
with np.errstate(divide='ignore', invalid='ignore'):
heuristic = 1.0 / (self.distances[prev] + 1e-10)
heuristic **= self.beta
# 计算概率分布
probabilities = (pheromone ** self.alpha) * heuristic
probabilities[list(visited)] = 0
# 处理全零概率的情况
if np.sum(probabilities) == 0:
available = list(set(range(len(probabilities))) - visited)
if not available:
return None
probabilities[available] = 1 # 均匀分布
# 归一化处理(确保和为1)
probabilities /= np.sum(probabilities)
probabilities = np.nan_to_num(probabilities, nan=0.0, posinf=0.0, neginf=0.0)
# 二次验证概率和
if np.abs(1 - np.sum(probabilities)) > 1e-6:
probabilities = np.ones_like(probabilities) / len(probabilities)
try:
next_city = np.random.choice(
range(len(self.distances)),
p=probabilities
)
return next_city
except:
available = list(set(range(len(probabilities))) - visited)
return np.random.choice(available) if available else None
# 数据加载模块(保持不变)
try:
df = pd.read_excel("TSP.xlsx", header=None)
cities = df.iloc[:, [0, 1]].values
assert cities.shape[1] == 2, "坐标数据必须包含X,Y两列"
except FileNotFoundError:
print("错误:Excel文件未找到,请检查以下事项:")
print("1. 文件是否位于当前工作目录")
print("2. 文件名是否为'TSP.xlsx'")
print("3. 文件扩展名是否正确(.xlsx)")
exit()
except Exception as e:
print(f"数据加载失败:{str(e)}")
exit()
# 计算距离矩阵(保持不变)
distances = calc_distances(cities)
# 参数设置(保持不变)
n_ants = 20
n_iterations = 1000
decay = 0.1
alpha = 1
beta = 2
rho = 0.1
Q = 1
# 创建并运行蚁群算法
ant_colony = AntColony(distances, n_ants, n_iterations, decay, alpha, beta, rho, Q)
shortest_path, shortest_path_length = ant_colony.run()
# 结果输出和可视化(保持不变)
# ...(与之前相同的输出和可视化代码)
```
主要改进点:
1. 增强的概率归一化处理:
- 添加多重验证确保概率和为1
- 处理全零概率时强制均匀分布
- 添加NaN和无穷值的处理
2. 路径生成安全机制:
- 添加无效路径的过滤
- 处理无法选择城市的情况
3. 改进的随机选择:
- 添加二次验证和异常处理
- 当概率选择失败时使用随机选择
阅读全文
相关推荐

















