<Figure size 1000x1000 with 0 Axes> --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[36], line 5 3 colnm = data_train1.columns.tolist() # 列表头 4 mcorr = data_train1[colnm].corr(method="spearman") # 相关系数矩阵,即给出了任意两个变量之间的相关系数 ----> 5 mask = np.zeros_like(mcorr, dtype=np.bool) # 构造与mcorr同维数矩阵 为bool型 6 mask[np.triu_indices_from(mask)] = True # 角分线右侧为True 7 cmap = sns.diverging_palette(220, 10, as_cmap=True) # 返回matplotlib colormap对象 File c:\Users\Administrator\AppData\Local\Programs\Python\Python38\lib\site-packages\numpy\__init__.py:305, in __getattr__(attr) 300 warnings.warn( 301 f"In the future `np.{attr}` will be defined as the " 302 "corresponding NumPy scalar.", FutureWarning, stacklevel=2) 304 if attr in __former_attrs__: --> 305 raise AttributeError(__former_attrs__[attr]) 307 # Importing Tester requires importing all of UnitTest which is not a 308 # cheap import Since it is mainly used in test suits, we lazy import it 309 # here to save on the order of 10 ms of import time for most users 310 # 311 # The previous way Tester was imported also had a side effect of adding 312 # the full `numpy.testing` namespace 313 if attr == 'testing': AttributeError: module 'numpy' has no attribute 'bool'. `np.bool` was a deprecated alias for the builtin `bool`. To avoid this error in existing code, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations出现的问题

时间: 2023-06-25 22:05:25 浏览: 293
这个错误出现在使用 `np.bool` 构造一个与相关系数矩阵同维数的布尔型矩阵时。在新版本的 NumPy 中,`np.bool` 已经被弃用,需要使用 `bool` 关键字代替。因此,你需要将代码中的 `np.bool` 替换为 `bool`。如果你需要使用 NumPy 的布尔型数据类型,应该使用 `np.bool_`。
相关问题

这是什么错误?--------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[92], line 8 5 s = data.groupby('店名')['price'].mean() 6 txt = data.groupby('店名').id.count().index ----> 8 sns.scatterplot(x,y,size=s,hue=s,sizes=(100,1500),data=data) 10 for i in range(len(txt)): 11 plt.annotate(txt[i],xy=(x[i],y[i])) TypeError: scatterplot() got multiple values for argument 'data' <Figure size 1200x1000 with 0 Axes>

这个报错的原因是 `sns.scatterplot()` 函数传递了重复的参数 'data',这意味着 `data` 参数被多次传递给了该函数。该函数的签名为: ```python sns.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None, palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None, size_norm=None, markers=True, style_order=None, x_bins=None, y_bins=None, units=None, estimator=None, ci=95, n_boot=1000, alpha='auto', x_jitter=None, y_jitter=None, legend='auto', ax=None, **kwargs) ``` 可以看到,该函数接受多个参数,其中 `data` 参数指定了要显示的数据集。因此,您需要检查代码中是否多次传递了 `data` 参数,如果有,请删除重复的参数。

--------------------------------------------------------------------------- ValueError Traceback (most recent call last) ~\AppData\Local\Temp\ipykernel_3552\2596624286.py in <module> 46 # 计算指标 47 accuracy = accuracy_score(Y_test, Y_pred) ---> 48 precision = precision_score(Y_test, Y_pred) 49 recall = recall_score(Y_test, Y_pred) 50 f1 = f1_score(Y_test, Y_pred) e:\Anaconda-python\envs\is6400\lib\site-packages\sklearn\metrics\_classification.py in precision_score(y_true, y_pred, labels, pos_label, average, sample_weight, zero_division) 1763 warn_for=("precision",), 1764 sample_weight=sample_weight, -> 1765 zero_division=zero_division, 1766 ) 1767 return p e:\Anaconda-python\envs\is6400\lib\site-packages\sklearn\metrics\_classification.py in precision_recall_fscore_support(y_true, y_pred, beta, labels, pos_label, average, warn_for, sample_weight, zero_division) 1542 if beta < 0: 1543 raise ValueError("beta should be >=0 in the F-beta score") -> 1544 labels = _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) 1545 1546 # Calculate tp_sum, pred_sum, true_sum ### e:\Anaconda-python\envs\is6400\lib\site-packages\sklearn\metrics\_classification.py in _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) 1355 if len(present_labels) >= 2: ... -> 1357 f"pos_label={pos_label} is not a valid label. It " 1358 f"should be one of {present_labels}" 1359 ) ValueError: pos_label=1 is not a valid label. It should be one of ['+', '-'] <Figure size 1500x1000 with 0 Axes> 根据你的代码出现了这个问题,需要怎么改,似乎是图像的大小不对

<think>嗯,用户遇到了一个ValueError,提示说pos_label=1不是有效的标签,正确的应该是['+', '-']。看起来问题出在计算precision_score的时候,模型的预测标签和真实标签是字符串形式的'+'和'-',而sklearn的某些指标函数默认使用数值型标签,比如1和0,导致不匹配。 首先,我需要确认用户的数据集中Y_test和Y_pred的标签确实是字符串类型。根据错误信息,标签是'+'和'-',而代码中调用precision_score时没有指定pos_label参数,导致函数默认寻找数值型的1作为正类,从而引发错误。 解决方法应该是在计算precision、recall和f1-score时,明确指定pos_label参数为其中一个类别,比如'+'或者'-'。例如,设置pos_label='+',这样函数就知道哪个类别作为正类来计算指标。同时,可能需要检查其他指标函数是否也需要同样的参数调整。 另外,用户提到的图像大小问题可能与绘图部分的代码有关,比如Figure的大小设置是否正确。但根据错误堆栈,主要问题还是标签类型不匹配。所以优先解决ValueError,之后再检查图像部分是否有尺寸设置错误的情况。 总结下来,修改点主要是在计算各个指标时添加pos_label参数,并确保所有相关函数都正确指定了字符串类型的正类标签。</think>这个错误源于分类标签类型与评估指标参数不匹配。让我们逐步分析并解决这个问题: 1. **问题根源分析**: - 错误显示`pos_label=1`不合法,因为你的分类标签是字符串类型`['+', '-']` - sklearn的评估函数默认使用`pos_label=1`(数值型标签),但你的标签是字符型 - 图像尺寸错误是独立问题(可能与后续的绘图代码有关) 2. **解决方案**: ```python # 修改所有评估指标调用,添加pos_label参数 precision = precision_score(Y_test, Y_pred, pos_label='+') # 指定正类标签 recall = recall_score(Y_test, Y_pred, pos_label='+') f1 = f1_score(Y_test, Y_pred, pos_label='+') ``` 3. **完整修改建议**: ```python # 计算指标时统一指定正类标签 accuracy = accuracy_score(Y_test, Y_pred) precision = precision_score(Y_test, Y_pred, pos_label='+') # 假设'+'是正类 recall = recall_score(Y_test, Y_pred, pos_label='+') f1 = f1_score(Y_test, Y_pred, pos_label='+') # 如果是多类问题,需要设置average参数 # precision = precision_score(Y_test, Y_pred, average='weighted') ``` 4. **图像尺寸问题解决方案**: ```python # 正确的figure尺寸设置方式(在plt.figure()中设置) plt.figure(figsize=(15,10)) # 宽度15英寸,高度10英寸 # 如果是使用subplots fig, ax = plt.subplots(figsize=(15,10)) ``` **补充说明**: - 建议将标签转换为数值型(如1和0)可以避免这类问题 - 转换方法: ```python from sklearn.preprocessing import LabelEncoder le = LabelEncoder() y = le.fit_transform(y) # '+'→1, '-'→0 ``` - 如果使用数值标签后,评估函数就不需要指定`pos_label` 建议检查数据预处理阶段,确保标签格式统一(全数值或全字符),这样能避免后续评估时出现兼容性问题。
阅读全文

相关推荐

import pandas as pd data = pd.read_csv(‘iris.txt’, delimiter=’ ', names=[‘x’,‘y’]) plt.figure(figsize=(100, 10)) data.plot.scatter(x=‘x’,y=‘y’)<Axes: xlabel=‘x’, ylabel=‘y’> Error in callback <function _draw_all_if_interactive at 0x000001E63CE451F0> (for post_execute): TypeError Traceback (most recent call last) File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib\axis.py:1770, in Axis.convert_units(self, x) 1769 try: -> 1770 ret = self.converter.convert(x, self.units, self) 1771 except Exception as e: File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib\category.py:57, in StrCategoryConverter.convert(value, unit, axis) 56 # force an update so it also does type checking —> 57 unit.update(values) 58 return np.vectorize(unit._mapping.getitem, otypes=[float])(values) File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib\category.py:216, in UnitData.update(self, data) 214 for val in OrderedDict.fromkeys(data): 215 # OrderedDict just iterates over unique values in data. –> 216 _api.check_isinstance((str, bytes), value=val) 217 if convertible: 218 # this will only be called so long as convertible is True. File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib_api_init_.py:93, in check_isinstance(_types, **kwargs) 92 names.append(“None”) —> 93 raise TypeError( 94 “{!r} must be an instance of {}, not a {}”.format( 95 k, 96 ", ".join(names[:-1]) + " or " + names[-1] … True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], fill_value=1e+20, dtype=float64) Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings…
TypeError Traceback (most recent call last) File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib\axis.py:1770, in Axis.convert_units(self, x) 1769 try: -> 1770 ret = self.converter.convert(x, self.units, self) 1771 except Exception as e: File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib\category.py:57, in StrCategoryConverter.convert(value, unit, axis) 56 # force an update so it also does type checking —> 57 unit.update(values) 58 return np.vectorize(unit._mapping.getitem, otypes=[float])(values) File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib\category.py:216, in UnitData.update(self, data) 214 for val in OrderedDict.fromkeys(data): 215 # OrderedDict just iterates over unique values in data. –> 216 _api.check_isinstance((str, bytes), value=val) 217 if convertible: 218 # this will only be called so long as convertible is True. File e:\Anaconda-python\envs\is6423new\lib\site-packages\matplotlib_api_init_.py:93, in check_isinstance(_types, **kwargs) 92 names.append(“None”) —> 93 raise TypeError( 94 “{!r} must be an instance of {}, not a {}”.format( 95 k, 96 ", ".join(names[:-1]) + " or " + names[-1] … True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], fill_value=1e+20, dtype=float64) Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings…
产生了以上的问题5.1,3.5,1.4,0.2,Iris-setosa 怎么办