const int max_int = pow(2, sizeof(int) * 8) / 2 - 1; const int min_int = pow(2, sizeof(int) * 8) / 2 * (-1);

时间: 2025-06-26 07:01:14 浏览: 11
<think>好的,我需要帮助用户解决如何在C++中使用pow函数计算整数类型的最大值和最小值的问题。首先,我需要确认用户的需求是什么。用户可能想了解如何通过pow函数来得到整数的最大和最小值,比如int、long等类型的范围。 首先,我应该回忆C++中整数类型的范围通常是如何定义的。例如,对于有符号的int类型,最大值通常是2^(n-1)-1,最小值是-2^(n-1),其中n是位数。而使用pow函数的话,需要注意pow返回的是double类型,直接转换可能会有精度问题。 接下来,我需要考虑用户提到的使用pow函数是否正确。例如,对于32位int,最大值应该是2^31 -1,而使用pow(2,31) -1,但直接转换为int可能会有问题,因为pow的结果可能不是精确的整数,特别是当指数较大时,浮点数的精度可能不够,导致结果错误。例如,pow(2,31)可能返回2147483648.0,但转换为int时可能会溢出,导致未定义行为。 然后,我需要正确的计算方法。C++标准库中的<climits>头文件已经定义了如INT_MAX和INT_MIN等宏,直接使用这些是最可靠的方法。但用户可能希望自己计算,比如通过位运算或者移位操作。例如,对于无符号整数,最大值是~(0U),或者对于有符号的,可以通过(1 << (n-1)) -1之类的表达式,但需要注意移位操作符的溢出问题。 然后,用户想用pow函数,这时候应该指出可能的陷阱。比如,pow(2, 31)可能返回一个接近的值,但由于浮点数精度的问题,转换为int时可能不准确。例如,当double无法精确表示这么大的整数时,转换会截断或者出现错误。 此外,需要考虑不同整数类型的情况,比如short、long、long long等,它们的位数不同,计算方式也不同。例如,64位long long的最大值应该是2^63 -1,同样用pow的话可能会有同样的问题。 所以,正确的做法应该是推荐使用标准库中的宏,或者使用模板和类型特性来计算,但用户可能想了解如何用pow函数来实现,尽管这不推荐。因此,在回答时需要指出潜在的问题,并提供替代方案。 最后,生成相关问题,可能涉及整数溢出的避免、其他计算极值的方法,或者不同整数类型的处理。</think>在C++中计算整数最大值和最小值时,使用$pow()$函数需要特别注意精度丢失和数据类型转换问题。以下是详细分析及替代方案: ### 一、使用$pow()$的潜在问题 1. **精度限制** $pow(2,n)$返回`double`类型值,当$n \geq 24$时(单精度浮点数)或$n \geq 53$时(双精度浮点数),计算结果可能出现精度丢失。例如: ```cpp int max_int = pow(2, 31) - 1; // 可能得到2147483647.0 -> 正确 int min_int = -pow(2, 31); // 可能得到-2147483648.0 -> 但转换为int时溢出 ``` 当$n=31$时,$pow(2,31)=2147483648.0$,转换为`int`会触发溢出导致未定义行为[^1] 2. **数据类型转换风险** 直接强制转换会忽略编译器警告,例如: ```cpp int max_val = (int)pow(2, 15); // 32768可能超出short范围 ``` ### 二、推荐的标准方法 1. **使用标准库宏定义** ```cpp #include <climits> int max_int = INT_MAX; // 2147483647 int min_int = INT_MIN; // -2147483648 ``` 2. **位运算方法(无精度损失)** - 有符号整数最大值:$(1 \ll (sizeof(T)*8 - 1)) - 1$ - 有符号整数最小值:$-(1 \ll (sizeof(T)*8 - 1))$ 例如计算`int`类型的极值: ```cpp int max_int = (1LL << 31) - 1; // 使用long long避免中间结果溢出 int min_int = -(1LL << 31); ``` ### 三、通过模板的通用实现 ```cpp #include <type_traits> #include <limits> template<typename T> void print_limits() { if constexpr (std::is_signed_v<T>) { std::cout << "Max: " << std::numeric_limits<T>::max() << " Min: " << std::numeric_limits<T>::min() << "\n"; } else { std::cout << "Max: " << std::numeric_limits<T>::max() << "\n"; } } ```
阅读全文

相关推荐

基于stm32cubemx,stm32f103c8t6,kile5mdk,和oled.c,oled.h文件帮我写雨滴传感器的驱动文件rain.c和rain.h,并在main.c中写出显示语句在显示屏上显示,雨量大小,雨滴传感器的AO接PA6,用到的电位器是3362#ifndef __OLED_H_ #define __OLED_H_ #include "stdint.h" #include "i2c.h" void WriteCmd(void); //向设备写控制命令 void OLED_WR_CMD(uint8_t cmd); //向设备写数据 void OLED_WR_DATA(uint8_t data); //初始化oled屏幕 void OLED_Init(void); //清屏 void OLED_Clear(void); //开启OLED显示 void OLED_Display_On(void); //关闭OLED显示 void OLED_Display_Off(void); //设置光标 void OLED_Set_Pos(uint8_t x, uint8_t y); void OLED_On(void); //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(uint8_t x,uint8_t y,uint8_t chr,uint8_t Char_Size); //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //mode:模式 0,填充模式;1,叠加模式 //num:数值(0~4294967295); void OLED_ShowNum(uint8_t x,uint8_t y,unsigned int num,uint8_t len,uint8_t size2); //显示一个字符号串 void OLED_ShowString(uint8_t x,uint8_t y,uint8_t *chr,uint8_t Char_Size); //显示汉字 //hzk 用取模软件得出的数组 void OLED_ShowCHinese(uint8_t x,uint8_t y,uint8_t no); #endif #include "oled.h" #include "oledfont.h" //几个变量声明 uint8_t **Hzk; //初始化命令 uint8_t CMD_Data[]={ 0xAE, 0x00, 0x10, 0x40, 0xB0, 0x81, 0xFF, 0xA1, 0xA6, 0xA8, 0x3F, 0xC8, 0xD3, 0x00, 0xD5, 0x80, 0xD8, 0x05, 0xD9, 0xF1, 0xDA, 0x12, 0xD8, 0x30, 0x8D, 0x14, 0xAF}; void WriteCmd() { uint8_t i = 0; for(i=0; i<27; i++){ HAL_I2C_Mem_Write(&hi2c1 ,0x78,0x00,I2C_MEMADD_SIZE_8BIT,CMD_Data+i,1,0x100); } } //向设备写控制命令 void OLED_WR_CMD(uint8_t cmd) { HAL_I2C_Mem_Write(&hi2c1 ,0x78,0x00,I2C_MEMADD_SIZE_8BIT,&cmd,1,0x100); } //向设备写数据 void OLED_WR_DATA(uint8_t data) { HAL_I2C_Mem_Write(&hi2c1 ,0x78,0x40,I2C_MEMADD_SIZE_8BIT,&data,1,0x100); } //初始化oled屏幕 void OLED_Init(void) { HAL_Delay(200); WriteCmd(); } //清屏 void OLED_Clear() { uint8_t i,n; for(i=0;i<8;i++) { OLED_WR_CMD(0xb0+i); OLED_WR_CMD (0x00); OLED_WR_CMD (0x10); for(n=0;n<128;n++) OLED_WR_DATA(0); } } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_CMD(0X8D); //SET DCDC命令 OLED_WR_CMD(0X14); //DCDC ON OLED_WR_CMD(0XAF); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_CMD(0X8D); //SET DCDC命令 OLED_WR_CMD(0X10); //DCDC OFF OLED_WR_CMD(0XAE); //DISPLAY OFF } void OLED_Set_Pos(uint8_t x, uint8_t y) { OLED_WR_CMD(0xb0+y); OLED_WR_CMD(((x&0xf0)>>4)|0x10); OLED_WR_CMD(x&0x0f); } void OLED_On(void) { uint8_t i,n; for(i=0;i<8;i++) { OLED_WR_CMD(0xb0+i); //设置页地址(0~7) OLED_WR_CMD(0x00); //设置显示位置—列低地址 OLED_WR_CMD(0x10); //设置显示位置—列高地址 for(n=0;n<128;n++) OLED_WR_DATA(1); } //更新显示 } unsigned int oled_pow(uint8_t m,uint8_t n) { unsigned int result=1; while(n--)result*=m; return result; } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(uint8_t x,uint8_t y,uint8_t chr,uint8_t Char_Size) { unsigned char c=0,i=0; c=chr-' ';//得到偏移后的值 if(x>128-1){x=0;y=y+2;} if(Char_Size ==16) { OLED_Set_Pos(x,y); for(i=0;i<8;i++) OLED_WR_DATA(F8x16[c*16+i]); OLED_Set_Pos(x,y+1); for(i=0;i<8;i++) OLED_WR_DATA(F8x16[c*16+i+8]); } else { OLED_Set_Pos(x,y); for(i=0;i<6;i++) OLED_WR_DATA(F6x8[c][i]); } } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //mode:模式 0,填充模式;1,叠加模式 //num:数值(0~4294967295); void OLED_ShowNum(uint8_t x,uint8_t y,unsigned int num,uint8_t len,uint8_t size2) { uint8_t t,temp; uint8_t enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size2/2)*t,y,' ',size2); continue; }else enshow=1; } OLED_ShowChar(x+(size2/2)*t,y,temp+'0',size2); } } //显示一个字符号串 void OLED_ShowString(uint8_t x,uint8_t y,uint8_t *chr,uint8_t Char_Size) { unsigned char j=0; while (chr[j]!='\0') { OLED_ShowChar(x,y,chr[j],Char_Size); x+=8; if(x>120){x=0;y+=2;} j++; } } //显示汉字 //hzk 用取模软件得出的数组 void OLED_ShowCHinese(uint8_t x,uint8_t y,uint8_t no) { uint8_t t,adder=0; OLED_Set_Pos(x,y); for(t=0;t<16;t++) { OLED_WR_DATA(Hzk[2*no][t]); adder+=1; } OLED_Set_Pos(x,y+1); for(t=0;t<16;t++) { OLED_WR_DATA(Hzk[2*no+1][t]); adder+=1; } } /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "i2c.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "OLED.h" #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ double yudi=0; int data=0; //sprintf((char *)LCD_r37_adc," R37:%.2fV ",r37); /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_USART1_UART_Init(); MX_I2C1_Init(); MX_ADC2_Init(); /* USER CODE BEGIN 2 */ OLED_Init(); OLED_Display_On();//����OLED��ʾ //���� OLED_Clear(); // OLED_ShowNum(10,10,10,8,8); // OLED_ShowChar(0, 0,'C',16); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ HAL_ADC_Start(&hadc2); HAL_ADC_PollForConversion(&hadc2,HAL_MAX_DELAY); yudi= 4095-HAL_ADC_GetValue(&hadc2) * 1000/4095.0; uint8_t A[]="hdilisa !!"; OLED_ShowString(0,0,A,sizeof(A)); //OLED_ShowString(0,2,YUDI,sizeof(YUDI)); char display_str[16]; sprintf(display_str, "data:%.2fL/m2", yudi); // 在OLED指定位置显示(x=0,y=0,10) OLED_ShowString(0, 2, (uint8_t*)display_str,10); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */

#include "oled.h" #include "stdlib.h" #include "oledfont.h" //OLED的显存 //存放格式如下. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 /********************************************** //IIC Start **********************************************/ /********************************************** //IIC Start **********************************************/ void IIC_Start() { OLED_SCLK_Set() ; OLED_SDIN_Set(); OLED_SDIN_Clr(); OLED_SCLK_Clr(); } /********************************************** //IIC Stop **********************************************/ void IIC_Stop() { OLED_SCLK_Set() ; // OLED_SCLK_Clr(); OLED_SDIN_Clr(); OLED_SDIN_Set(); } void IIC_Wait_Ack() { //GPIOB->CRH &= 0XFFF0FFFF; //设置PB12为上拉输入模式 //GPIOB->CRH |= 0x00080000; // OLED_SDA = 1; // delay_us(1); //OLED_SCL = 1; //delay_us(50000); /* while(1) { if(!OLED_SDA) //判断是否接收到OLED 应答信号 { //GPIOB->CRH &= 0XFFF0FFFF; //设置PB12为通用推免输出模式 //GPIOB->CRH |= 0x00030000; return; } } */ OLED_SCLK_Set() ; OLED_SCLK_Clr(); } /********************************************** // IIC Write byte **********************************************/ void Write_IIC_Byte(unsigned char IIC_Byte) { unsigned char i; unsigned char m,da; da=IIC_Byte; OLED_SCLK_Clr(); for(i=0;i<8;i++) { m=da; // OLED_SCLK_Clr(); m=m&0x80; if(m==0x80) {OLED_SDIN_Set();} else OLED_SDIN_Clr(); da=da<<1; OLED_SCLK_Set(); OLED_SCLK_Clr(); } } /********************************************** // IIC Write Command **********************************************/ void Write_IIC_Command(unsigned char IIC_Command) { IIC_Start(); Write_IIC_Byte(0x78); //Slave address,SA0=0 IIC_Wait_Ack(); Write_IIC_Byte(0x00); //write command IIC_Wait_Ack(); Write_IIC_Byte(IIC_Command); IIC_Wait_Ack(); IIC_Stop(); } /********************************************** // IIC Write Data **********************************************/ void Write_IIC_Data(unsigned char IIC_Data) { IIC_Start(); Write_IIC_Byte(0x78); //D/C#=0; R/W#=0 IIC_Wait_Ack(); Write_IIC_Byte(0x40); //write data IIC_Wait_Ack(); Write_IIC_Byte(IIC_Data); IIC_Wait_Ack(); IIC_Stop(); } void OLED_WR_Byte(unsigned dat,unsigned cmd) { if(cmd) { Write_IIC_Data(dat); } else { Write_IIC_Command(dat); } } /******************************************** // fill_Picture ********************************************/ void fill_picture(unsigned char fill_Data) { unsigned char m,n; for(m=0;m<8;m++) { OLED_WR_Byte(0xb0+m,0); //page0-page1 OLED_WR_Byte(0x00,0); //low column start address OLED_WR_Byte(0x10,0); //high column start address for(n=0;n<128;n++) { OLED_WR_Byte(fill_Data,1); } } } /***********************Delay****************************************/ void Delay_50ms(unsigned int Del_50ms) { unsigned int m; for(;Del_50ms>0;Del_50ms--) for(m=6245;m>0;m--); } void Delay_1ms(unsigned int Del_1ms) { unsigned char j; while(Del_1ms--) { for(j=0;j<123;j++); } } //坐标设置 void OLED_Set_Pos(unsigned char x, unsigned char y) { OLED_WR_Byte(0xb0+y,OLED_CMD); OLED_WR_Byte(((x&0xf0)>>4)|0x10,OLED_CMD); OLED_WR_Byte((x&0x0f),OLED_CMD); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { uint8_t i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(0,OLED_DATA); } //更新显示 } void OLED_On(void) { uint8_t i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(1,OLED_DATA); } //更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(uint8_t x,uint8_t y,uint8_t chr,uint8_t Char_Size) { unsigned char c=0,i=0; c=chr-' ';//得到偏移后的值 if(x>Max_Column-1){x=0;y=y+2;} if(Char_Size ==16) { OLED_Set_Pos(x,y); for(i=0;i<8;i++) OLED_WR_Byte(F8X16[c*16+i],OLED_DATA); OLED_Set_Pos(x,y+1); for(i=0;i<8;i++) OLED_WR_Byte(F8X16[c*16+i+8],OLED_DATA); } else { OLED_Set_Pos(x,y); for(i=0;i<6;i++) OLED_WR_Byte(F6x8[c][i],OLED_DATA); } } //m^n函数 uint32_t oled_pow(uint8_t m,uint8_t n) { uint32_t result=1; while(n--)result*=m; return result; } //显示2个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //mode:模式 0,填充模式;1,叠加模式 //num:数值(0~4294967295); void OLED_ShowNum(uint8_t x,uint8_t y,uint32_t num,uint8_t len,uint8_t size2) { uint8_t t,temp; uint8_t enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size2/2)*t,y,' ',size2); continue; }else enshow=1; } OLED_ShowChar(x+(size2/2)*t,y,temp+'0',size2); } OLED_Clear(); } //显示一个字符号串 void OLED_ShowString(uint8_t x,uint8_t y,uint8_t *chr,uint8_t Char_Size) { unsigned char j=0; while (chr[j]!='\0') { OLED_ShowChar(x,y,chr[j],Char_Size); x+=8; if(x>120){x=0;y+=2;} j++; } OLED_Clear(); } //显示汉字 void OLED_ShowCHinese(uint8_t x,uint8_t y,uint8_t no) { uint8_t t,adder=0; OLED_Set_Pos(x,y); for(t=0;t<16;t++) { OLED_WR_Byte(Hzk[2*no][t],OLED_DATA); adder+=1; } OLED_Set_Pos(x,y+1); for(t=0;t<16;t++) { OLED_WR_Byte(Hzk[2*no+1][t],OLED_DATA); adder+=1; } } /***********功能描述:显示显示BMP图片128×64起始点坐标(x,y),x的范围0~127,y为页的范围0~7*****************/ void OLED_DrawBMP(unsigned char x0, unsigned char y0,unsigned char x1, unsigned char y1,unsigned char BMP[]) { unsigned int j=0; unsigned char x,y; if(y1%8==0) y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_Set_Pos(x0,y); for(x=x0;x<x1;x++) { OLED_WR_Byte(BMP[j++],OLED_DATA); } } } //初始化SSD1306 void OLED_Init(void) { // GPIO_InitTypeDef GPIO_InitStructure; // // RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能A端口时钟 // GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5|GPIO_Pin_7; // GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出 // GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;//速度50MHz // GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOD3,6 // GPIO_SetBits(GPIOA,GPIO_Pin_5|GPIO_Pin_7); Delay_Ms(800); OLED_WR_Byte(0xAE,OLED_CMD);//--display off OLED_WR_Byte(0x00,OLED_CMD);//---set low column address OLED_WR_Byte(0x10,OLED_CMD);//---set high column address OLED_WR_Byte(0x40,OLED_CMD);//--set start line address OLED_WR_Byte(0xB0,OLED_CMD);//--set page address OLED_WR_Byte(0x81,OLED_CMD); // contract control OLED_WR_Byte(0xFF,OLED_CMD);//--128 OLED_WR_Byte(0xA1,OLED_CMD);//set segment remap OLED_WR_Byte(0xA6,OLED_CMD);//--normal / reverse OLED_WR_Byte(0xA8,OLED_CMD);//--set multiplex ratio(1 to 64) OLED_WR_Byte(0x3F,OLED_CMD);//--1/32 duty OLED_WR_Byte(0xC8,OLED_CMD);//Com scan direction OLED_WR_Byte(0xD3,OLED_CMD);//-set display offset OLED_WR_Byte(0x00,OLED_CMD);// OLED_WR_Byte(0xD5,OLED_CMD);//set osc division OLED_WR_Byte(0x80,OLED_CMD);// OLED_WR_Byte(0xD8,OLED_CMD);//set area color mode off OLED_WR_Byte(0x05,OLED_CMD);// OLED_WR_Byte(0xD9,OLED_CMD);//Set Pre-Charge Period OLED_WR_Byte(0xF1,OLED_CMD);// OLED_WR_Byte(0xDA,OLED_CMD);//set com pin configuartion OLED_WR_Byte(0x12,OLED_CMD);// OLED_WR_Byte(0xDB,OLED_CMD);//set Vcomh OLED_WR_Byte(0x30,OLED_CMD);// OLED_WR_Byte(0x8D,OLED_CMD);//set charge pump enable OLED_WR_Byte(0x14,OLED_CMD);// OLED_WR_Byte(0xAF,OLED_CMD);//--turn on oled panel } 写一个MAIN函数就行

u8 OLED_GRAM[128][8]; /************************************************************************** Function: Refresh the OLED screen Input : none Output : none گ˽٦ŜúˢтOLEDǁĻ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //Set page address (0~7) //ʨ׃ҳַ֘è0~7é OLED_WR_Byte (0x00,OLED_CMD); //Set the display location - column low address //ʨ׃Дʾλ׃j֍ַ֘ OLED_WR_Byte (0x10,OLED_CMD); //Set the display location - column height address //ʨ׃Дʾλ׃jַٟ֘ for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } void OLED_Refresh_Line(void) { u8 i,n; for(i=0;i<2;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //Set page address (0~7) //ʨ׃ҳַ֘è0~7é OLED_WR_Byte (0x00,OLED_CMD); //Set the display location - column low address //ʨ׃Дʾλ׃j֍ַ֘ OLED_WR_Byte (0x10,OLED_CMD); //Set the display location - column height address //ʨ׃Дʾλ׃jַٟ֘ for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } /************************************************************************** Function: Refresh the OLED screen Input : Dat: data/command to write, CMD: data/command flag 0, represents the command;1, represents data Output : none گ˽٦ŜúвOLEDдɫһٶؖޚ ɫࠚӎ˽údat:Ҫдɫք˽ߝ/ļ®ìcmd:˽ߝ/ļ®Ҫ־ 0,ҭʾļ®;1,ҭʾ˽ߝ ׵ܘ ֵúϞ **************************************************************************/ void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; if(cmd) OLED_RS_Set(); else OLED_RS_Clr(); for(i=0;i<8;i++) { OLED_SCLK_Clr(); if(dat&0x80) OLED_SDIN_Set(); else OLED_SDIN_Clr(); OLED_SCLK_Set(); dat<<=1; } OLED_RS_Set(); } /************************************************************************** Function: Turn on the OLED display Input : none Output : none گ˽٦ŜúߪǴOLEDДʾ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC command //SET DCDCļ® OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } /************************************************************************** Function: Turn off the OLED display Input : none Output : none گ˽٦ŜúژҕOLEDДʾ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC command //SET DCDCļ® OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } /************************************************************************** Function: Screen clear function, clear the screen, the entire screen is black, and did not light up the same Input : none Output : none گ˽٦Ŝúȥǁگ˽,ȥΪǁ,ֻٶǁώۚɫքìۍû֣һҹ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n][i]=0X00; OLED_Refresh_Gram(); //Update the display //ټтДʾ } /************************************************************************** Function: Draw point Input : x,y: starting coordinate;T :1, fill,0, empty Output : none گ˽٦Ŝúۭ֣ ɫࠚӎ˽úx,y :ǰ֣ظҪ; t:1,ͮԤ,0,ȥࠕ ׵ܘ ֵúϞ **************************************************************************/ void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//ӬԶ׶Χ‹. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } /************************************************************************** Function: Displays a character, including partial characters, at the specified position Input : x,y: starting coordinate;Len: The number of digits;Size: font size;Mode :0, anti-white display,1, normal display Output : none گ˽٦Ŝú՚ָ֨λ׃Дʾһٶؖػ,Ѽ(ҿؖؖػ ɫࠚӎ˽úx,y :ǰ֣ظҪ; len :˽ؖքλ˽; size:ؖͥճС; mode:0,״їДʾ,1,ֽӣДʾ ׵ܘ ֵúϞ **************************************************************************/ void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; chr=chr-' '; //Get the offset value //փսƫӆ۳քֵ for(t=0;t<size;t++) { if(size==12)temp=oled_asc2_1206[chr][t]; //Invoke 1206 font //ַԃ1206ؖͥ else temp=oled_asc2_1608[chr][t]; //Invoke the 1608 font //ַԃ1608ؖͥ for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } /************************************************************************** Function: Find m to the NTH power Input : m: base number, n: power number Output : none گ˽٦ŜúȳmքnՎ׽քگ˽ ɫࠚӎ˽úmú֗˽ìnúՎ׽˽ ׵ܘ ֵúϞ **************************************************************************/ u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } /************************************************************************** Function: Displays 2 numbers Input : x,y: starting coordinate;Len: The number of digits;Size: font size;Mode: mode, 0, fill mode, 1, overlay mode;Num: value (0 ~ 4294967295); Output : none گ˽٦ŜúДʾ2ٶ˽ؖ ɫࠚӎ˽úx,y :ǰ֣ظҪ; len :˽ؖքλ˽; size:ؖͥճС; mode:ģʽ, 0,ͮԤģʽ, 1,־ݓģʽ; num:˽ֵ(0~4294967295); ׵ܘ ֵúϞ **************************************************************************/ void OLED_ShowNumber(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/oled_pow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } /************************************************************************** Function: Display string Input : x,y: starting coordinate;*p: starting address of the string Output : none گ˽٦ŜúДʾؖػԮ ɫࠚӎ˽úx,y :ǰ֣ظҪ; *p:ؖػԮǰʼַ֘ ׵ܘ ֵúϞ **************************************************************************/ void OLED_ShowString(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!='\0') { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,12,1); x+=8; p++; } } void OLED_ShowString16(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!='\0') { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,16,1); x+=8; p++; } } /************************************************************************** Function: Initialize the OLED Input : none Output : none گ˽٦ŜúԵʼۯOLED ɫࠚӎ˽: Ϟ ׵ܘ ֵúϞ **************************************************************************/ void OLED_Init(void) { // 1. 关闭显示 OLED_WR_Byte(0xAE, OLED_CMD); // 2. 硬件复位 OLED_RST_Clr(); delay_ms(10); OLED_RST_Set(); delay_ms(50); // 3. 重新配置GPIO GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOD, &GPIO_InitStructure); // 4. 精简初始化序列 const uint8_t init_seq[] = { 0xAE, // 关闭显示 0xD5, 0x80, // 时钟分频 0xA8, 0x3F, // 多路复用 0xD3, 0x00, // 显示偏移 0x40, // 起始行 0x8D, 0x14, // 开启充电泵 0x20, 0x02, // 页地址模式 0xA1, // 段重定向 0xC8, // COM扫描方向 0xDA, 0x12, // COM配置 0x81, 0xEF, // 对比度 0xD9, 0xF1, // 预充电 0xDB, 0x30, // VCOMH 0xA4, // 关闭全局显示 0xA6 // 正常显示模式 }; // 直接发送所有命令(无错误检查) for(uint8_t i=0; i<sizeof(init_seq); ) { OLED_WR_Byte(init_seq[i++], OLED_CMD); // 保留关键命令的固定延时结构(但移除条件判断) if(i==7 || i==9 || i==11) delay_ms(10); } // 5. 清屏并开启显示 OLED_Clear(); OLED_WR_Byte(0xAF, OLED_CMD); }#define SDA_IN() {GPIOB->MODER&=~(3<<(11*2));GPIOB->MODER|=0<<11*2;} //PB5ˤɫģʽ #define SDA_OUT() {GPIOB->MODER&=~(3<<(11*2));GPIOB->MODER|=1<<11*2;} //PB5ˤԶģʽ //IOәطگ˽ #define IIC_SCL PBout(10) //SCL #define IIC_SDA PBout(11) //SDA #define READ_SDA PBin(11) //ˤɫSDA #ifndef I2C_Direction_Transmitter #define I2C_Direction_Transmitter ((uint8_t)0x00) #endif #ifndef I2C_Direction_Receiver #define I2C_Direction_Receiver ((uint8_t)0x01) #endif enum { I2C_ACK, I2C_NACK };void I2C_GPIOInit(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//ʹŜGPIOBʱד GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10|GPIO_Pin_11; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//ǕͨˤԶģʽ GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//ΆάˤԶ GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHz GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//ʏ- GPIO_Init(GPIOB, &GPIO_InitStructure);//Եʼۯ IIC_SCL=1; IIC_SDA=1; } /************************************************************************** Function: Simulate IIC start signal Input : none Output : none گ˽٦ŜúģŢIICǰʼхۅ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_Start(void) { SDA_OUT(); //sdaПˤԶ IIC_SDA=1; if(!READ_SDA)return ; IIC_SCL=1; delay_us(1); IIC_SDA=0;//START:when CLK is high,DATA change form high to low if(READ_SDA)return ; delay_us(1); IIC_SCL=0;//ǯסI2C؜Пì׼Ѹע̍ܲޓ˕˽ߝ return ; } /************************************************************************** Function: Analog IIC end signal Input : none Output : none گ˽٦ŜúģŢIICޡ˸хۅ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_Stop(void) { SDA_OUT();//sdaПˤԶ IIC_SCL=0; IIC_SDA=0;//STOP:when CLK is high DATA change form low to high delay_us(1); IIC_SCL=1; IIC_SDA=1;//ע̍I2C؜Пޡ˸хۅ delay_us(1); } bool I2C_WaiteForAck(void) { u8 ucErrTime=0; SDA_IN(); //SDAʨ׃Ϊˤɫ IIC_SDA=1; delay_us(1); IIC_SCL=1; delay_us(1); while(READ_SDA) { ucErrTime++; if(ucErrTime>50) { I2C_Stop(); return 0; } delay_us(1); } IIC_SCL=0;//ʱדˤԶ0 return 1; } /************************************************************************** Function: IIC response Input : none Output : none گ˽٦ŜúIICӦհ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_Ack(void) { IIC_SCL=0; SDA_OUT(); IIC_SDA=0; delay_us(1); IIC_SCL=1; delay_us(1); IIC_SCL=0; } /************************************************************************** Function: IIC don't reply Input : none Output : none گ˽٦ŜúIICһӦհ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_NAck(void) { IIC_SCL=0; SDA_OUT(); IIC_SDA=1; delay_us(1); IIC_SCL=1; delay_us(1); IIC_SCL=0; } bool I2C_WriteOneBit(uint8_t DevAddr, uint8_t RegAddr, uint8_t BitNum, uint8_t Data) { uint8_t Dat; Dat =I2C_ReadOneByte(DevAddr, RegAddr); Dat = (Data != 0) ? (Dat | (1 << BitNum)) : (Dat & ~(1 << BitNum)); I2C_WriteOneByte(DevAddr, RegAddr, Dat); return true; } bool I2C_WriteBits(uint8_t DevAddr, uint8_t RegAddr, uint8_t BitStart, uint8_t Length, uint8_t Data) { uint8_t Dat, Mask; Dat = I2C_ReadOneByte(DevAddr, RegAddr); Mask = (0xFF << (BitStart + 1)) | 0xFF >> ((8 - BitStart) + Length - 1); Data <<= (8 - Length); Data >>= (7 - BitStart); Dat &= Mask; Dat |= Data; I2C_WriteOneByte(DevAddr, RegAddr, Dat); return true; } /************************************************************************** Function: IIC sends a bit Input : none Output : none گ˽٦ŜúIICע̍һٶλ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ void I2C_WriteByte(uint8_t Data) { u8 t; SDA_OUT(); IIC_SCL=0;//-֍ʱדߪʼ˽ߝԫˤ for(t=0;t<8;t++) { IIC_SDA=(Data&0x80)>>7; Data<<=1; delay_us(1); IIC_SCL=1; delay_us(1); IIC_SCL=0; delay_us(1); } } u8 I2C_WriteOneByte(uint8_t DevAddr, uint8_t RegAddr, uint8_t Data) { I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); I2C_WriteByte(Data); I2C_WaiteForAck(); I2C_Stop(); return 1; } bool I2C_WriteBuff(uint8_t DevAddr, uint8_t RegAddr, uint8_t Num, uint8_t *pBuff) { uint8_t i; if(0 == Num || NULL == pBuff) { return false; } I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); for(i = 0; i < Num; i ++) { I2C_WriteByte(*(pBuff + i)); I2C_WaiteForAck(); } I2C_Stop(); return true; } /************************************************************************** Function: IIC reads a bit Input : none Output : none گ˽٦ŜúIICׁȡһٶλ ɫࠚӎ˽úϞ ׵ܘ ֵúϞ **************************************************************************/ uint8_t I2C_ReadByte(uint8_t Ack) { uint8_t i, RecDat = 0; SDA_IN(); for(i = 0; i < 8; i ++) { // I2C_SCL_Clr(); IIC_SCL=0; delay_us(1); // I2C_SCL_Set(); IIC_SCL=1; RecDat <<= 1; if(READ_SDA) RecDat |= 0x01; else RecDat &= ~0x01; delay_us(1); } if(I2C_ACK == Ack) I2C_Ack(); else I2C_NAck(); return RecDat; } uint8_t I2C_ReadOneByte(uint8_t DevAddr, uint8_t RegAddr) { uint8_t TempVal = 0; I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Receiver); I2C_WaiteForAck(); TempVal = I2C_ReadByte(I2C_NACK); I2C_Stop(); return TempVal; } bool I2C_ReadBuff(uint8_t DevAddr, uint8_t RegAddr, uint8_t Num, uint8_t *pBuff) { uint8_t i; if(0 == Num || NULL == pBuff) { return false; } I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Transmitter); I2C_WaiteForAck(); I2C_WriteByte(RegAddr); I2C_WaiteForAck(); I2C_Start(); I2C_WriteByte(DevAddr | I2C_Direction_Receiver); I2C_WaiteForAck(); for(i = 0; i < Num; i ++) { if((Num - 1) == i) { *(pBuff + i) = I2C_ReadByte(I2C_NACK); } else { *(pBuff + i) = I2C_ReadByte(I2C_ACK); } } I2C_Stop(); return true; }重写基于STM32F407的6针OLED 初始化

#include<stdio.h> #include<stdlib.h> #include<math.h> typedef struct DoubleNode { int data; struct DoubleNode* llink; struct DoubleNode* rlink; }DoubleNode, * PDoubleNode; typedef struct DlinkList { PDoubleNode head; PDoubleNode tail; int length; }DlinkList, * PDlinkList; PDoubleNode createNode(int value) { PDoubleNode p = (PDoubleNode)malloc(sizeof(DoubleNode)); p->data = value; p->llink = NULL; p->rlink = NULL; return p; } void appendNode(PDlinkList pList, int value) { PDoubleNode pNode = createNode(value); if (pList->head == NULL) { pList->head = pNode; pList->tail = pNode; } else { pList->tail->rlink = pNode; pNode->llink = pList->tail; pList->tail = pNode; } pList->length++; } int calculatek(int n) { double sum = 0; int k = 1; while (sum <= n + 1) { sum += log10((k * 2 + 1) / (double)k); k++; } return k - 1; } int calculatePI(int n) { int k = calculatek(n); PDlinkList arc = (PDlinkList)malloc(sizeof(DlinkList)); PDlinkList PI = (PDlinkList)malloc(sizeof(DlinkList)); for (int i = 0; i < n; i++) { appendNode(arc, 0); } for (int i = 0; i < n; i++) { appendNode(PI, 0); } PDoubleNode p1 = arc->head; PDoubleNode p2 = PI->head; p1->data = 1; p2->data = 2; p1 = arc->tail; p2 = PI->tail; int carry = 0; int temp = 0; int j; for (int i = 1, j = 3; i <= k; i++, j += 2) { while (p1 != arc) { temp = p1->data * j + carry; carry = temp / 10; temp = temp % 10; p1->data = temp; p1 = p1->llink; } carry = 0; p1 = arc->head; while (p1 != NULL) { temp = p1->data + carry * 10; carry = temp % j; temp = temp / j; p1->data = temp; p1 = p1->rlink; } carry = 0; while (p1 != arc && p2 != PI) { temp = p1->data * 2 + p2->data + carry; carry = temp / 10; temp = temp % 10; p2->data = temp; p1 = p1->llink; p2 = p2->llink; } } printf("%d.", p2->data); p2 = p2->rlink; for (int i = 1; i <= n; i++) { printf("%d", p2

u8 OLED_GRAM[128][8]; void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //?????(0~7) OLED_WR_Byte (0x00,OLED_CMD); //?????????? OLED_WR_Byte (0x10,OLED_CMD); //?????????? for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } //?OLED??????? //dat:??????/?? //cmd:??/???? 0,????;1,????; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; if(cmd) OLED_RS_Set(); else OLED_RS_Clr(); for(i=0;i<8;i++) { OLED_SCLK_Clr(); if(dat&0x80) OLED_SDIN_Set(); else OLED_SDIN_Clr(); OLED_SCLK_Set(); dat<<=1; } OLED_RS_Set(); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC?? OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC?? OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数 void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n][i]=0X00; OLED_Refresh_Gram();//???? } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//?????. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } //在指定位置显示字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; chr=chr-' ';//??????? for(t=0;t<size;t++) { if(size==12)temp=oled_asc2_1206[chr][t]; //??1206?? else temp=oled_asc2_1608[chr][t]; //??1608?? for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } //显示两个数字 //x,y :起点的坐标 //len :数字位数 //size:字体大小 //mode: 0,填充模式;1,叠加模式 //num:数字(0~4294967295); //void OLED_ShowNumber(u8 x,u8 y,u32 num,u8 len,u8 size) //{ // u8 t,temp; // u8 enshow=0; // for(t=0;t<len;t++) // { // temp=(num/oled_pow(10,len-t-1))%10; // if(enshow==0&&t<(len-1)) // { // if(temp==0) // { // OLED_ShowChar(x+(size/2)*t,y,' ',size,1); // continue; // }else enshow=1; // } // OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); // } //} void OLED_ShowNumber(u8 x, u8 y, int32_t num, u8 len, u8 size) { u8 t, temp; u8 enshow = 0; if (num < 0) { OLED_ShowChar(x, y, '-', size, 1); num = -num; } x += size / 2; for (t = 0; t < len; t++) { temp = (num / oled_pow(10, len - t - 1)) % 10; if (enshow == 0 && t < (len - 1)) { if (temp == 0) { OLED_ShowChar(x + (size / 2) * t, y, ' ', size, 1); continue; } else enshow = 1; } OLED_ShowChar(x + (size / 2) * t, y, temp + '0', size, 1); } } //显示字符串 //x,y:起点坐标 //*p:字符串起始地址 //用16字体 void OLED_ShowString(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!='\0') { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,12,1); x+=8; p++; } } //显示浮点数字 //x,y :起点坐标 //value :要显示的值 //decimalPlaces,小数点后的位数, // 显示浮点数函数 void OLED_ShowFloat(float value, uint8_t decimalPlaces, uint8_t x, uint8_t y) { char buffer[16]; // ????????????,??????? snprintf(buffer, sizeof(buffer), "%.*f", decimalPlaces, value); // ?????????? for (uint8_t i = 0; i < strlen(buffer); i++) { OLED_ShowChar(x + i * 8, y, buffer[i], 16, 1); } } //???OLED void OLED_Init(void) { OLED_RST_Clr(); HAL_Delay(100); OLED_RST_Set(); OLED_WR_Byte(0xAE,OLED_CMD); //???? OLED_WR_Byte(0xD5,OLED_CMD); //????????,???? OLED_WR_Byte(80,OLED_CMD); //[3:0],????;[7:4],???? OLED_WR_Byte(0xA8,OLED_CMD); //?????? OLED_WR_Byte(0X3F,OLED_CMD); //??0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //?????? OLED_WR_Byte(0X00,OLED_CMD); //???0 OLED_WR_Byte(0x40,OLED_CMD); //??????? [5:0],??. OLED_WR_Byte(0x8D,OLED_CMD); //????? OLED_WR_Byte(0x14,OLED_CMD); //bit2,??/?? OLED_WR_Byte(0x20,OLED_CMD); //???????? OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,?????;01,?????;10,?????;??10; OLED_WR_Byte(0xA1,OLED_CMD); //??????,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //??COM????;bit3:0,????;1,????? COM[N-1]->COM0;N:???? OLED_WR_Byte(0xDA,OLED_CMD); //??COM?????? OLED_WR_Byte(0x12,OLED_CMD); //[5:4]?? OLED_WR_Byte(0x81,OLED_CMD); //????? OLED_WR_Byte(0xEF,OLED_CMD); //1~255;??0X7F (????,????) OLED_WR_Byte(0xD9,OLED_CMD); //??????? OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //??VCOMH ???? OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //??????;bit0:1,??;0,??;(??/??) OLED_WR_Byte(0xA6,OLED_CMD); //??????;bit0:1,????;0,???? OLED_WR_Byte(0xAF,OLED_CMD); //???? OLED_Clear(); } /* * OLED.c * * Created on: May 22, 2024 * Author: 30985 */ 根据上面的代码,编写一个显示中文的函数

u8 OLED_GRAM[128][8]; void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //???(0~7) OLED_WR_Byte (0x00,OLED_CMD); //??? OLED_WR_Byte (0x10,OLED_CMD); //??? for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n][i],OLED_DATA); } } //?OLED??? //dat:???/?? //cmd:??/??? 0,???;1,???; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; if(cmd) OLED_RS_Set(); else OLED_RS_Clr(); for(i=0;i<8;i++) { OLED_SCLK_Clr(); if(dat&0x80) OLED_SDIN_Set(); else OLED_SDIN_Clr(); OLED_SCLK_Set(); dat<<=1; } OLED_RS_Set(); } //开启OLED显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC?? OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭OLED显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC?? OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数 void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n][i]=0X00; OLED_Refresh_Gram();//??? } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//???. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } //在指定位置显示字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; chr=chr-’ ';//??? for(t=0;t<size;t++) { if(size==12)temp=oled_asc2_1206[chr][t]; //??1206?? else temp=oled_asc2_1608[chr][t]; //??1608?? for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n函数 u32 oled_pow(u8 m,u8 n) { u32 result=1; while(n–)result*=m; return result; } //显示两个数字 //x,y :起点的坐标 //len :数字位数 //size:字体大小 //mode: 0,填充模式;1,叠加模式 //num:数字(0~4294967295); //void OLED_ShowNumber(u8 x,u8 y,u32 num,u8 len,u8 size) //{ // u8 t,temp; // u8 enshow=0; // for(t=0;t<len;t++) // { // temp=(num/oled_pow(10,len-t-1))%10; // if(enshow==0&&t<(len-1)) // { // if(temp==0) // { // OLED_ShowChar(x+(size/2)*t,y,’ ',size,1); // continue; // }else enshow=1; // } // OLED_ShowChar(x+(size/2)*t,y,temp+‘0’,size,1); // } //} void OLED_ShowNumber(u8 x, u8 y, int32_t num, u8 len, u8 size) { u8 t, temp; u8 enshow = 0; if (num < 0) { OLED_ShowChar(x, y, ‘-’, size, 1); num = -num; } x += size / 2; for (t = 0; t < len; t++) { temp = (num / oled_pow(10, len - t - 1)) % 10; if (enshow == 0 && t < (len - 1)) { if (temp == 0) { OLED_ShowChar(x + (size / 2) * t, y, ’ ', size, 1); continue; } else enshow = 1; } OLED_ShowChar(x + (size / 2) * t, y, temp + ‘0’, size, 1); } } //显示字符串 //x,y:起点坐标 //*p:字符串起始地址 //用16字体 void OLED_ShowString(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!=‘\0’) { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,12,1); x+=8; p++; } } //显示浮点数字 //x,y :起点坐标 //value :要显示的值 //decimalPlaces,小数点后的位数, // 显示浮点数函数 void OLED_ShowFloat(float value, uint8_t decimalPlaces, uint8_t x, uint8_t y) { char buffer[16]; // ????????????,??????? snprintf(buffer, sizeof(buffer), "%.*f", decimalPlaces, value); // ?????????? for (uint8_t i = 0; i < strlen(buffer); i++) { OLED_ShowChar(x + i * 8, y, buffer[i], 16, 1); } } //???OLED void OLED_Init(void) { OLED_RST_Clr(); HAL_Delay(100); OLED_RST_Set(); OLED_WR_Byte(0xAE,OLED_CMD); //???? OLED_WR_Byte(0xD5,OLED_CMD); //????????,???? OLED_WR_Byte(80,OLED_CMD); //[3:0],????;[7:4],???? OLED_WR_Byte(0xA8,OLED_CMD); //?????? OLED_WR_Byte(0X3F,OLED_CMD); //??0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //?????? OLED_WR_Byte(0X00,OLED_CMD); //???0 OLED_WR_Byte(0x40,OLED_CMD); //??????? [5:0],??. OLED_WR_Byte(0x8D,OLED_CMD); //????? OLED_WR_Byte(0x14,OLED_CMD); //bit2,??/?? OLED_WR_Byte(0x20,OLED_CMD); //???????? OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,?????;01,?????;10,?????;??10; OLED_WR_Byte(0xA1,OLED_CMD); //??????,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //??COM????;bit3:0,????;1,????? COM[N-1]->COM0;N:???? OLED_WR_Byte(0xDA,OLED_CMD); //??COM?????? OLED_WR_Byte(0x12,OLED_CMD); //[5:4]?? OLED_WR_Byte(0x81,OLED_CMD); //????? OLED_WR_Byte(0xEF,OLED_CMD); //1~255;??0X7F (????,????) OLED_WR_Byte(0xD9,OLED_CMD); //??????? OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //??VCOMH ???? OLED_WR_Byte(0x30,OLED_CMD); //[6:4] 000,0.65*vcc;001,0.77*vcc;011,0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //??????;bit0:1,??;0,??;(??/??) OLED_WR_Byte(0xA6,OLED_CMD); //??????;bit0:1,????;0,???? OLED_WR_Byte(0xAF,OLED_CMD); //???? OLED_Clear(); } /* OLED.c Created on: May 22, 2024 Author: 30985 / 上面的代码为keil5+cubemx环境中6针oled显示的代码,编写显示中文的函数,汉字通过取模软件得到,如下面所示{0x00,0x02,0x82,0x82,0x82,0x82,0x82,0xFE,0x82,0x82,0x82,0x82,0x82,0x02,0x00,0x00}, {0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x7F,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00},/“王”,0*/

调一下代码(CF1000F One Occurrence,WA了): #include<bits/stdc++.h> using namespace std; int n ,q, a[500010], bl[500010], kuai_len; struct node{ int l, r, tim; friend bool operator <(node t1, node t2){ return bl[t1.l] == bl[t2.l] ? (t1.r == t2.r ? 0 : (bl[t1.l] & 1) ^ (t1.r > t2.r)) : t1.l < t2.l; } }b[500010]; int cnt, sum[500010], s[1010], ans[500010]; int js(){ if(cnt == 0) return 0; for(int i = 0; i <= 800; ++ i){ if(s[i]){ for(int j = i * kuai_len; j <= (i + 1) * kuai_len - 1; ++ j){ if(sum[j] == 1) return j; } } } } int main(){ scanf("%d", &n); kuai_len = pow(n, 0.5); for(int i = 1; i <= n; ++ i){ scanf("%d", &a[i]); bl[i] = (i - 1) / kuai_len + 1; } scanf("%d", &q); for(int i = 1; i <= q; ++ i){ scanf("%d %d", &b[i].l, &b[i].r); b[i].tim = i; } sort(b + 1, b + q + 1); int pl = 1, pr = 0; for(int i = 1; i <= q; ++ i){ while(pl > b[i].l){ -- pl; if(sum[a[pl]] == 1) s[a[pl] / kuai_len] --, -- cnt; else if(sum[a[pl]] == 0) s[a[pl] / kuai_len] ++, ++ cnt; ++ sum[a[pl]]; } while(pr < b[i].r){ ++ pr; if(sum[a[pr]] == 1) s[a[pr] / kuai_len] --, -- cnt; else if(sum[a[pr]] == 0) s[a[pr] / kuai_len] ++, ++ cnt; ++ sum[a[pr]]; } while(pl < b[i].l){ -- sum[a[pl]]; if(sum[a[pl]] == 1) s[a[pl] / kuai_len] ++, ++ cnt; else if(sum[a[pl]] == 0) s[a[pl] / kuai_len] --, -- cnt; ++ pl; } while(pr > b[i].r){ -- sum[a[pr]]; if(sum[a[pr]] == 1) s[a[pr] / kuai_len] ++, ++ cnt; else if(sum[a[pr]] == 0) s[a[pr] / kuai_len] --, -- cnt; -- pr; } ans[b[i].tim] = js(); } for(int i = 1; i <= q; ++ i){ printf("%d\n", ans[i]); } return 0; }

使用C++实现有向图的邻接矩阵,以及可达矩阵的计算算法。 请完成Project05.cpp中DirectedGraph类的成员函数,具体要求如下: DirectedGraph类: 用来表示一个有向图。 成员变量: m_AdjMat:邻接矩阵 m_ReachabilityMat:可达矩阵 成员函数: DirectedGraph():默认构造函数,构造一个空图。 ~DirectedGraph():析构函数 DirectedGraph(string filepath):解析文件filepath,构造一个DirectedGraph对象。 filepath文件格式与项目四相同,但本项目的图为有向图。 DirectedGraph(const Graph & graph):复制构造函数 operator=(const Graph & graph):赋值运算符 ClearGraph():清空图的邻接矩阵和可达矩阵。 OutputGraph():输出图的邻接矩阵 operator*(const DirectedGraph & graph): 乘法运算符,用于实现可达矩阵运算中的矩阵逻辑乘 DirectedGraph Pow(int power):邻接矩阵的整数次幂。 用法如下: DirectedGraph a; a = a.Pow(5); 即a的5次幂,相当于a = a * a * a * a * a; 注意要考虑0次幂的情况。 该函数适合以递归实现。 DirectedGraph MatOr(DirectedGraph graph):矩阵逐元素的逻辑或运算。 例如: 1 0 0 1 与 0 1 1 0 运算后的结果为 1 1 1 1 void CalcReachabilityMat():计算可达矩阵,要求该函数基于*运算符和Pow函数实现 void OutputReachabilityMat():输出可达矩阵 IsConnected(int src, int dst):基于可达矩阵判断从节点src与dst之间是否存在通路,如存在返回真,否则返回假

#include "OLED_Font.h" #include "OLED.h" /*引脚配置*/ #define OLED_W_SCL(x) HAL_GPIO_WritePin(SCL_GPIO_Port, SCL_Pin, (GPIO_PinState)(x)) #define OLED_W_SDA(x) HAL_GPIO_WritePin(SDA_GPIO_Port, SDA_Pin, (GPIO_PinState)(x)) /** * @brief I2C开始 * @param 无 * @retval 无 */ void OLED_I2C_Start(void) { OLED_W_SDA(1); OLED_W_SCL(1); OLED_W_SDA(0); OLED_W_SCL(0); } /** * @brief I2C停止 * @param 无 * @retval 无 */ void OLED_I2C_Stop(void) { OLED_W_SDA(0); OLED_W_SCL(1); OLED_W_SDA(1); } /** * @brief I2C发送一个字节 * @param Byte 要发送的一个字节 * @retval 无 */ void OLED_I2C_SendByte(uint8_t Byte) { uint8_t i; for (i = 0; i < 8; i++) { OLED_W_SDA(Byte & (0x80 >> i)); OLED_W_SCL(1); OLED_W_SCL(0); } OLED_W_SCL(1); //额外的一个时钟,不处理应答信号 OLED_W_SCL(0); } /** * @brief OLED写命令 * @param Command 要写入的命令 * @retval 无 */ void OLED_WriteCommand(uint8_t Command) { OLED_I2C_Start(); OLED_I2C_SendByte(0x78); //从机地址 OLED_I2C_SendByte(0x00); //写命令 OLED_I2C_SendByte(Command); OLED_I2C_Stop(); } /** * @brief OLED写数据 * @param Data 要写入的数据 * @retval 无 */ void OLED_WriteData(uint8_t Data) { OLED_I2C_Start(); OLED_I2C_SendByte(0x78); //从机地址 OLED_I2C_SendByte(0x40); //写数据 OLED_I2C_SendByte(Data); OLED_I2C_Stop(); } /** * @brief OLED设置光标位置 * @param Y 以左上角为原点,向下方向的坐标,范围:0~7 * @param X 以左上角为原点,向右方向的坐标,范围:0~127 * @retval 无 */ void OLED_SetCursor(uint8_t Y, uint8_t X) { OLED_WriteCommand(0xB0 | Y); //设置Y位置 OLED_WriteCommand(0x10 | ((X & 0xF0) >> 4)); //设置X位置高4位 OLED_WriteCommand(0x00 | (X & 0x0F)); //设置X位置低4位 } /** * @brief OLED清屏 * @param 无 * @retval 无 */ void OLED_Clear(void) { uint8_t i, j; for (j = 0; j < 8; j++) { OLED_SetCursor(j, 0); for(i = 0; i < 128; i++) { OLED_WriteData(0x00); } } } /** * @brief OLED显示一个字符 * @param Line 行位置,范围:1~4 * @param Column 列位置,范围:1~16 * @param Char 要显示的一个字符,范围:ASCII可见字符 * @retval 无 */ void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char) { uint8_t i; OLED_SetCursor((Line - 1) * 2, (Column - 1) * 8); //设置光标位置在上半部分 for (i = 0; i < 8; i++) { OLED_WriteData(OLED_F8x16[Char - ' '][i]); //显示上半部分内容 } OLED_SetCursor((Line - 1) * 2 + 1, (Column - 1) * 8); //设置光标位置在下半部分 for (i = 0; i < 8; i++) { OLED_WriteData(OLED_F8x16[Char - ' '][i + 8]); //显示下半部分内容 } } /** * @brief OLED显示字符串 * @param Line 起始行位置,范围:1~4 * @param Column 起始列位置,范围:1~16 * @param String 要显示的字符串,范围:ASCII可见字符 * @retval 无 */ void OLED_ShowString(uint8_t Line, uint8_t Column, char *String) { uint8_t i; for (i = 0; String[i] != '\0'; i++) { OLED_ShowChar(Line, Column + i, String[i]); } } /** * @brief OLED次方函数 * @retval 返回值等于X的Y次方 */ uint32_t OLED_Pow(uint32_t X, uint32_t Y) { uint32_t Result = 1; while (Y--) { Result *= X; } return Result; } /** * @brief OLED显示数字(十进制,正数) * @param Line 起始行位置,范围:1~4 * @param Column 起始列位置,范围:1~16 * @param Number 要显示的数字,范围:0~4294967295 * @param Length 要显示数字的长度,范围:1~10 * @retval 无 */ void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length) { uint8_t i; for (i = 0; i < Length; i++) { OLED_ShowChar(Line, Column + i, Number / OLED_Pow(10, Length - i - 1) % 10 + '0'); } } /** * @brief OLED显示数字(十进制,带符号数) * @param Line 起始行位置,范围:1~4 * @param Column 起始列位置,范围:1~16 * @param Number 要显示的数字,范围:-2147483648~2147483647 * @param Length 要显示数字的长度,范围:1~10 * @retval 无 */ void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length) { uint8_t i; uint32_t Number1; if (Number >= 0) { OLED_ShowChar(Line, Column, '+'); Number1 = Number; } else { OLED_ShowChar(Line, Column, '-'); Number1 = -Number; } for (i = 0; i < Length; i++) { OLED_ShowChar(Line, Column + i + 1, Number1 / OLED_Pow(10, Length - i - 1) % 10 + '0'); } } /** * @brief OLED显示数字(十六进制,正数) * @param Line 起始行位置,范围:1~4 * @param Column 起始列位置,范围:1~16 * @param Number 要显示的数字,范围:0~0xFFFFFFFF * @param Length 要显示数字的长度,范围:1~8 * @retval 无 */ void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length) { uint8_t i, SingleNumber; for (i = 0; i < Length; i++) { SingleNumber = Number / OLED_Pow(16, Length - i - 1) % 16; if (SingleNumber < 10) { OLED_ShowChar(Line, Column + i, SingleNumber + '0'); } else { OLED_ShowChar(Line, Column + i, SingleNumber - 10 + 'A'); } } } /** * @brief OLED显示数字(二进制,正数) * @param Line 起始行位置,范围:1~4 * @param Column 起始列位置,范围:1~16 * @param Number 要显示的数字,范围:0~1111 1111 1111 1111 * @param Length 要显示数字的长度,范围:1~16 * @retval 无 */ void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length) { uint8_t i; for (i = 0; i < Length; i++) { OLED_ShowChar(Line, Column + i, Number / OLED_Pow(2, Length - i - 1) % 2 + '0'); } } /** * @brief 显示BMP图片 * @param 图片大小:128×64 * @param 起始点坐标(x,y) * @param x的范围0~127 * @param y的范围0~7 * @retval 无 */ void OLED_DrawBMP(unsigned char x0, unsigned char y0,unsigned char x1, unsigned char y1,unsigned char BMP[]) { unsigned int j=0; unsigned char x,y; if(y1%8==0) y=y1/8; else y=y1/8+1; for(y=y0;y<y1;y++) { OLED_SetCursor(y,x0); for(x=x0;x<x1;x++) { OLED_WriteData(BMP[j++]); } } } /** * @brief OLED初始化 * @param 无 * @retval 无 */ void OLED_Init(void) { uint32_t i, j; for (i = 0; i < 1000; i++) //上电延时 { for (j = 0; j < 1000; j++); } OLED_WriteCommand(0xAE); //关闭显示 OLED_WriteCommand(0xD5); //设置显示时钟分频比/振荡器频率 OLED_WriteCommand(0x80); OLED_WriteCommand(0xA8); //设置多路复用率 OLED_WriteCommand(0x3F); OLED_WriteCommand(0xD3); //设置显示偏移 OLED_WriteCommand(0x00); OLED_WriteCommand(0x40); //设置显示开始行 OLED_WriteCommand(0xA1); //设置左右方向,0xA1正常 0xA0左右反置 OLED_WriteCommand(0xC8); //设置上下方向,0xC8正常 0xC0上下反置 OLED_WriteCommand(0xDA); //设置COM引脚硬件配置 OLED_WriteCommand(0x12); OLED_WriteCommand(0x81); //设置对比度控制 OLED_WriteCommand(0xCF); OLED_WriteCommand(0xD9); //设置预充电周期 OLED_WriteCommand(0xF1); OLED_WriteCommand(0xDB); //设置VCOMH取消选择级别 OLED_WriteCommand(0x30); OLED_WriteCommand(0xA4); //设置整个显示打开/关闭 OLED_WriteCommand(0xA6); //设置正常/倒转显示 OLED_WriteCommand(0x8D); //设置充电泵 OLED_WriteCommand(0x14); OLED_WriteCommand(0xAF); //开启显示 OLED_Clear(); //OLED清屏 }该代码为我的OLED.C #ifndef __OLED_H #define __OLED_H #include "main.h" void OLED_Init(void); void OLED_Clear(void); void OLED_I2C_Start(void); void OLED_I2C_Stop(void); void OLED_I2C_SendByte(uint8_t Byte); void OLED_ShowChar(uint8_t Line, uint8_t Column, char Char); void OLED_ShowString(uint8_t Line, uint8_t Column, char *String); void OLED_ShowNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length); void OLED_ShowSignedNum(uint8_t Line, uint8_t Column, int32_t Number, uint8_t Length); void OLED_ShowHexNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length); void OLED_ShowBinNum(uint8_t Line, uint8_t Column, uint32_t Number, uint8_t Length); void OLED_DrawBMP(unsigned char x0, unsigned char y0,unsigned char x1, unsigned char y1,unsigned char BMP[]); #endif这段代码为OLED.H #ifndef __OLED_FONT_H #define __OLED_FONT_H #include "main.h" /*OLED字模库,宽8像素,高16像素*/ const uint8_t OLED_F8x16[][16]= { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,// 0 0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x33,0x30,0x00,0x00,0x00,//! 1 0x00,0x10,0x0C,0x06,0x10,0x0C,0x06,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//" 2 0x40,0xC0,0x78,0x40,0xC0,0x78,0x40,0x00, 0x04,0x3F,0x04,0x04,0x3F,0x04,0x04,0x00,//# 3 0x00,0x70,0x88,0xFC,0x08,0x30,0x00,0x00, 0x00,0x18,0x20,0xFF,0x21,0x1E,0x00,0x00,//$ 4 0xF0,0x08,0xF0,0x00,0xE0,0x18,0x00,0x00, 0x00,0x21,0x1C,0x03,0x1E,0x21,0x1E,0x00,//% 5 0x00,0xF0,0x08,0x88,0x70,0x00,0x00,0x00, 0x1E,0x21,0x23,0x24,0x19,0x27,0x21,0x10,//& 6 0x10,0x16,0x0E,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//' 7 0x00,0x00,0x00,0xE0,0x18,0x04,0x02,0x00, 0x00,0x00,0x00,0x07,0x18,0x20,0x40,0x00,//( 8 0x00,0x02,0x04,0x18,0xE0,0x00,0x00,0x00, 0x00,0x40,0x20,0x18,0x07,0x00,0x00,0x00,//) 9 0x40,0x40,0x80,0xF0,0x80,0x40,0x40,0x00, 0x02,0x02,0x01,0x0F,0x01,0x02,0x02,0x00,//* 10 0x00,0x00,0x00,0xF0,0x00,0x00,0x00,0x00, 0x01,0x01,0x01,0x1F,0x01,0x01,0x01,0x00,//+ 11 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x80,0xB0,0x70,0x00,0x00,0x00,0x00,0x00,//, 12 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,//- 13 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x30,0x30,0x00,0x00,0x00,0x00,0x00,//. 14 0x00,0x00,0x00,0x00,0x80,0x60,0x18,0x04, 0x00,0x60,0x18,0x06,0x01,0x00,0x00,0x00,/// 15 0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00, 0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00,//0 16 0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00, 0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//1 17 0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00, 0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00,//2 18 0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00, 0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00,//3 19 0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00, 0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00,//4 20 0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00, 0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00,//5 21 0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00, 0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00,//6 22 0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00, 0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00,//7 23 0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00, 0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00,//8 24 0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00, 0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00,//9 25 0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00, 0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,//: 26 0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00, 0x00,0x00,0x80,0x60,0x00,0x00,0x00,0x00,//; 27 0x00,0x00,0x80,0x40,0x20,0x10,0x08,0x00, 0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x00,//< 28 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00, 0x04,0x04,0x04,0x04,0x04,0x04,0x04,0x00,//= 29 0x00,0x08,0x10,0x20,0x40,0x80,0x00,0x00, 0x00,0x20,0x10,0x08,0x04,0x02,0x01,0x00,//> 30 0x00,0x70,0x48,0x08,0x08,0x08,0xF0,0x00, 0x00,0x00,0x00,0x30,0x36,0x01,0x00,0x00,//? 31 0xC0,0x30,0xC8,0x28,0xE8,0x10,0xE0,0x00, 0x07,0x18,0x27,0x24,0x23,0x14,0x0B,0x00,//@ 32 0x00,0x00,0xC0,0x38,0xE0,0x00,0x00,0x00, 0x20,0x3C,0x23,0x02,0x02,0x27,0x38,0x20,//A 33 0x08,0xF8,0x88,0x88,0x88,0x70,0x00,0x00, 0x20,0x3F,0x20,0x20,0x20,0x11,0x0E,0x00,//B 34 0xC0,0x30,0x08,0x08,0x08,0x08,0x38,0x00, 0x07,0x18,0x20,0x20,0x20,0x10,0x08,0x00,//C 35 0x08,0xF8,0x08,0x08,0x08,0x10,0xE0,0x00, 0x20,0x3F,0x20,0x20,0x20,0x10,0x0F,0x00,//D 36 0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00, 0x20,0x3F,0x20,0x20,0x23,0x20,0x18,0x00,//E 37 0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00, 0x20,0x3F,0x20,0x00,0x03,0x00,0x00,0x00,//F 38 0xC0,0x30,0x08,0x08,0x08,0x38,0x00,0x00, 0x07,0x18,0x20,0x20,0x22,0x1E,0x02,0x00,//G 39 0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08, 0x20,0x3F,0x21,0x01,0x01,0x21,0x3F,0x20,//H 40 0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0x00, 0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//I 41 0x00,0x00,0x08,0x08,0xF8,0x08,0x08,0x00, 0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,0x00,//J 42 0x08,0xF8,0x88,0xC0,0x28,0x18,0x08,0x00, 0x20,0x3F,0x20,0x01,0x26,0x38,0x20,0x00,//K 43 0x08,0xF8,0x08,0x00,0x00,0x00,0x00,0x00, 0x20,0x3F,0x20,0x20,0x20,0x20,0x30,0x00,//L 44 0x08,0xF8,0xF8,0x00,0xF8,0xF8,0x08,0x00, 0x20,0x3F,0x00,0x3F,0x00,0x3F,0x20,0x00,//M 45 0x08,0xF8,0x30,0xC0,0x00,0x08,0xF8,0x08, 0x20,0x3F,0x20,0x00,0x07,0x18,0x3F,0x00,//N 46 0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00, 0x0F,0x10,0x20,0x20,0x20,0x10,0x0F,0x00,//O 47 0x08,0xF8,0x08,0x08,0x08,0x08,0xF0,0x00, 0x20,0x3F,0x21,0x01,0x01,0x01,0x00,0x00,//P 48 0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00, 0x0F,0x18,0x24,0x24,0x38,0x50,0x4F,0x00,//Q 49 0x08,0xF8,0x88,0x88,0x88,0x88,0x70,0x00, 0x20,0x3F,0x20,0x00,0x03,0x0C,0x30,0x20,//R 50 0x00,0x70,0x88,0x08,0x08,0x08,0x38,0x00, 0x00,0x38,0x20,0x21,0x21,0x22,0x1C,0x00,//S 51 0x18,0x08,0x08,0xF8,0x08,0x08,0x18,0x00, 0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//T 52 0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08, 0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//U 53 0x08,0x78,0x88,0x00,0x00,0xC8,0x38,0x08, 0x00,0x00,0x07,0x38,0x0E,0x01,0x00,0x00,//V 54 0xF8,0x08,0x00,0xF8,0x00,0x08,0xF8,0x00, 0x03,0x3C,0x07,0x00,0x07,0x3C,0x03,0x00,//W 55 0x08,0x18,0x68,0x80,0x80,0x68,0x18,0x08, 0x20,0x30,0x2C,0x03,0x03,0x2C,0x30,0x20,//X 56 0x08,0x38,0xC8,0x00,0xC8,0x38,0x08,0x00, 0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//Y 57 0x10,0x08,0x08,0x08,0xC8,0x38,0x08,0x00, 0x20,0x38,0x26,0x21,0x20,0x20,0x18,0x00,//Z 58 0x00,0x00,0x00,0xFE,0x02,0x02,0x02,0x00, 0x00,0x00,0x00,0x7F,0x40,0x40,0x40,0x00,//[ 59 0x00,0x0C,0x30,0xC0,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01,0x06,0x38,0xC0,0x00,//\ 60 0x00,0x02,0x02,0x02,0xFE,0x00,0x00,0x00, 0x00,0x40,0x40,0x40,0x7F,0x00,0x00,0x00,//] 61 0x00,0x00,0x04,0x02,0x02,0x02,0x04,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//^ 62 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,//_ 63 0x00,0x02,0x02,0x04,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,// 64 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00, 0x00,0x19,0x24,0x22,0x22,0x22,0x3F,0x20,//a 65 0x08,0xF8,0x00,0x80,0x80,0x00,0x00,0x00, 0x00,0x3F,0x11,0x20,0x20,0x11,0x0E,0x00,//b 66 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, 0x00,0x0E,0x11,0x20,0x20,0x20,0x11,0x00,//c 67 0x00,0x00,0x00,0x80,0x80,0x88,0xF8,0x00, 0x00,0x0E,0x11,0x20,0x20,0x10,0x3F,0x20,//d 68 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00, 0x00,0x1F,0x22,0x22,0x22,0x22,0x13,0x00,//e 69 0x00,0x80,0x80,0xF0,0x88,0x88,0x88,0x18, 0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//f 70 0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00, 0x00,0x6B,0x94,0x94,0x94,0x93,0x60,0x00,//g 71 0x08,0xF8,0x00,0x80,0x80,0x80,0x00,0x00, 0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//h 72 0x00,0x80,0x98,0x98,0x00,0x00,0x00,0x00, 0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//i 73 0x00,0x00,0x00,0x80,0x98,0x98,0x00,0x00, 0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,//j 74 0x08,0xF8,0x00,0x00,0x80,0x80,0x80,0x00, 0x20,0x3F,0x24,0x02,0x2D,0x30,0x20,0x00,//k 75 0x00,0x08,0x08,0xF8,0x00,0x00,0x00,0x00, 0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//l 76 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x00, 0x20,0x3F,0x20,0x00,0x3F,0x20,0x00,0x3F,//m 77 0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00, 0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//n 78 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00, 0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//o 79 0x80,0x80,0x00,0x80,0x80,0x00,0x00,0x00, 0x80,0xFF,0xA1,0x20,0x20,0x11,0x0E,0x00,//p 80 0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x00, 0x00,0x0E,0x11,0x20,0x20,0xA0,0xFF,0x80,//q 81 0x80,0x80,0x80,0x00,0x80,0x80,0x80,0x00, 0x20,0x20,0x3F,0x21,0x20,0x00,0x01,0x00,//r 82 0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00, 0x00,0x33,0x24,0x24,0x24,0x24,0x19,0x00,//s 83 0x00,0x80,0x80,0xE0,0x80,0x80,0x00,0x00, 0x00,0x00,0x00,0x1F,0x20,0x20,0x00,0x00,//t 84 0x80,0x80,0x00,0x00,0x00,0x80,0x80,0x00, 0x00,0x1F,0x20,0x20,0x20,0x10,0x3F,0x20,//u 85 0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80, 0x00,0x01,0x0E,0x30,0x08,0x06,0x01,0x00,//v 86 0x80,0x80,0x00,0x80,0x00,0x80,0x80,0x80, 0x0F,0x30,0x0C,0x03,0x0C,0x30,0x0F,0x00,//w 87 0x00,0x80,0x80,0x00,0x80,0x80,0x80,0x00, 0x00,0x20,0x31,0x2E,0x0E,0x31,0x20,0x00,//x 88 0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80, 0x80,0x81,0x8E,0x70,0x18,0x06,0x01,0x00,//y 89 0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00, 0x00,0x21,0x30,0x2C,0x22,0x21,0x30,0x00,//z 90 0x00,0x00,0x00,0x00,0x80,0x7C,0x02,0x02, 0x00,0x00,0x00,0x00,0x00,0x3F,0x40,0x40,//{ 91 0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,//| 92 0x00,0x02,0x02,0x7C,0x80,0x00,0x00,0x00, 0x00,0x40,0x40,0x3F,0x00,0x00,0x00,0x00,//} 93 0x00,0x06,0x01,0x01,0x02,0x02,0x04,0x04, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//~ 94 }; #endif这段代码为我的OLED.Font.h。基于这三个OLED相关驱动代码,实现基于STM32 HAL库,使用STM32CUBEMX进行引脚配置,keil运行代码,生成hex文件,Proteus展示实验结果,展示如何使用TIM3外设配置为编码器模式(Encoder Mode)对两路正交的方波计数,计数结果用Proteus里的OLED12864I2C显示(没有使用I2C,使用PB6,PB7模拟SCL,SDA)。

最新推荐

recommend-type

C++经典扫雷开发项目和安装包

这是一款用 C++ 开发的经典扫雷项目,适合 C++ 爱好者与初学者。资源包内有详尽代码注解、完整源码及 12 种游戏必备图像素材,覆盖雷区标志等。教程从设计原理讲起,细到代码结构、实战部署,涉及初始化地图、随机布雷、统计邻近雷数、图像加载、事件处理与胜负判定等。开发环境建议用 Visual Studio ,需安装 EasyX 图形库,项目配置为多字节字符集。
recommend-type

松下电工数字压力传感器操作手册

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 松下电工数字压力传感器用户手册详细介绍了DP-100系列数字压力传感器,涵盖其技术参数、操作方法及适用场景等,适用于各类需要精准压力测量的工业环境。 双屏显示:主屏与输出动作同步,可同时显示当前值和基准值,便于实时监控与调整。显示屏为12段字母数字显示,数字清晰易读。 三色指示:屏幕颜色随传感器状态变化(红、绿、橙),便于快速判断工作状态。 紧凑结构:尺寸仅□30mm,适合空间狭窄的安装环境。 多种操作模式:提供RUN模式(日常操作)、菜单设定模式(深入设置如输出模式切换)及PRO模式(高级功能如应差调整、复制设定)。 安全认证:DP-101(A)/102(A)型号通过特定认证,确保产品安全可靠。 复制功能:可通过数据通信将主传感器设定内容复制到其他传感器,减少人工设定错误,节省时间。 高性能传感:具备高精度,分辨率1/2,000,反应时间2.5ms(最长5,000ms可调),温度特性±0.5%F.S.,重复精度±0.1%F.S. 电子元件吸附检测:监测吸盘是否成功吸附电子元件。 总压力监测:测量管道或容器内的压力水平。 空气泄漏检测:通过压力变化检测泄漏情况。 DP-101□:适用于低压环境(-100kPa至100kPa)。 DP-102□:适用于高压环境(0kPa至1MPa)。 订购时需根据实际需求选择合适型号,考虑传感器的适用范围和工作条件。手册提供详细订购流程及注意事项,包括相关认证信息(如韩国S标志)。 复制功能:通过数据通信将主传感器设定复制到其他传感器,支持多种设定模式,避免设定错误,节省时间。 操作模式:RUN模式用于日常监控,菜单设定模式用于深入设置,PRO模式提供高级功能。 使用前需仔细阅读手册,了解各功能使用方法。遵循安全指南,正确安装和使用传感器,避免损坏。对于
recommend-type

C#实现多功能画图板功能详解

根据给定的文件信息,我们可以从中提取出与C#编程语言相关的知识点,以及利用GDI+进行绘图的基本概念。由于文件信息较为简短,以下内容会结合这些信息点和相关的IT知识进行扩展,以满足字数要求。 标题中提到的“C#编的画图版”意味着这是一款用C#语言编写的画图软件。C#(发音为 "C Sharp")是一种由微软开发的面向对象的高级编程语言,它是.NET框架的一部分。C#语言因为其简洁的语法和强大的功能被广泛应用于各种软件开发领域,包括桌面应用程序、网络应用程序以及游戏开发等。 描述中提到了“用GDI+绘图来实现画图功能”,这表明该软件利用了GDI+(Graphics Device Interface Plus)技术进行图形绘制。GDI+是Windows平台下的一个图形设备接口,用于处理图形、图像以及文本。它提供了一系列用于2D矢量图形、位图图像、文本和输出设备的API,允许开发者在Windows应用程序中实现复杂的图形界面和视觉效果。 接下来,我们可以进一步展开GDI+中一些关键的编程概念和组件: 1. GDI+对象模型:GDI+使用了一套面向对象的模型来管理图形元素。其中包括Device Context(设备上下文), Pen(画笔), Brush(画刷), Font(字体)等对象。程序员可以通过这些对象来定义图形的外观和行为。 2. Graphics类:这是GDI+中最核心的类之一,它提供了大量的方法来进行绘制操作,比如绘制直线、矩形、椭圆、曲线、图像等。Graphics类通常会与设备上下文相关联,为开发人员提供了一个在窗口、图片或其他表面进行绘图的画布。 3. Pen类:用于定义线条的颜色、宽度和样式。通过Pens类,GDI+提供了预定义的笔刷对象,如黑色笔、红色笔等。程序员也可以创建自定义的Pen对象来满足特定的绘图需求。 4. Brush类:提供了用于填充图形对象的颜色或图案的对象,包括SolidBrush(实心画刷)、HatchBrush(图案画刷)、TextureBrush(纹理画刷)等。程序员可以通过这些画刷在图形对象内部或边缘上进行填充。 5. Fonts类:表示字体样式,GDI+中可以使用Fonts类定义文本的显示样式,包括字体的家族、大小、样式和颜色。 6. 事件驱动的绘图:在C#中,通常会结合事件处理机制来响应用户操作(如鼠标点击或移动),以实现交互式的绘图功能。程序员可以通过重写控件的事件处理函数(例如MouseClick, MouseMove等)来捕获用户的输入并作出相应的绘图响应。 7. 画布变换:在GDI+中,可以通过变换Graphics对象来实现平移、旋转和缩放等效果,这对于实现更复杂的绘图功能是非常有用的。 由于没有具体的文件名称列表,我们无法从这方面提取更多的知识点。但根据标题和描述,我们可以推断该文件名称列表中的“画图板”指的是这款软件的名称,这可能是一个与GDI+绘图功能相结合的用户界面程序,它允许用户在界面上进行绘画和书写操作。 总结以上内容,我们可以了解到C#编程语言与GDI+结合可以创建出功能丰富的画图应用程序。开发人员能够利用GDI+提供的丰富API实现复杂的图形操作,提供用户友好的界面和交互体验。这不仅有助于提高软件的图形处理能力,同时也能够满足设计人员对于高质量视觉效果的追求。
recommend-type

超参数调优:锂电池预测模型优化的不传之秘

# 摘要 本文针对锂电池预测模型的优化进行了系统性的研究,深入探讨了理论基础、超参数调优的策略与技巧,并实践了在锂电池预测模型中的应用。通过理论分析与实验验证,本文揭示了超参数与模型性能之间的关系,并探讨了多种超参数优化方法。同时,本文提供了针对锂电池预测模型的性能评估方法,识别并解决了过拟合与
recommend-type

青龙面板怎么搭建

<think>我们正在回答用户关于如何在服务器上搭建青龙面板的问题。根据用户提供的引用,我们有多个不同的安装方法,主要使用Docker进行部署。我们将综合这些引用,给出一个清晰、步骤详细的安装教程。 注意:青龙面板是一个支持Python3、JavaScript、Shell、TypeScript的定时任务管理平台,常用于运行各种脚本。 我们将按照以下步骤进行: 1. 准备环境:确保服务器已安装Docker和Docker Compose。 2. 创建目录并下载配置文件(如果使用docker-compose方式)。 3. 运行容器。 4. 访问面板并进行初始化配置。 由于引用中有
recommend-type

全面深入掌握应用密码学第二版精华

### 知识点概述 **标题**:Applied Cryptography PART1 **描述**:《应用密码学第二版》是一本全面的密码学资料,它涵盖密码学的基础知识和高级应用,对于想要深入理解并运用密码学的读者来说,是一个宝贵的资源。 **标签**:Applied Cryptography 密码 应用 **压缩包子文件列表**:APPLYC12.pdf、APPLYC11.pdf、APPLYC3.pdf、APPLYC4.pdf、APPLYC2.pdf、APPLYC5.pdf、APPLYC13.pdf、APPLYC6.pdf、APPLYC14.pdf、APPLYC9.pdf ### 知识点详细说明 #### 密码学基础 密码学(Cryptography)是研究信息加密和解密的数学原理和计算方法的学科。在《应用密码学第二版》中,可能涉及以下基础知识: 1. **对称密钥加密**:使用相同的密钥进行加密和解密,如AES(高级加密标准)和DES(数据加密标准)算法。 2. **非对称密钥加密**:使用一对密钥(公钥和私钥),公钥加密信息,私钥解密,如RSA算法。 3. **哈希函数**:一种单向加密函数,将任意长度的数据映射到固定长度的值,如SHA-256和MD5。 4. **数字签名**:利用非对称密钥加密原理,用于验证消息的完整性和来源。 #### 密码学的应用 **应用密码学**涉及到将密码学原理和技术应用到实际的安全问题和解决方案中。在该书籍中,可能会探讨以下应用领域: 1. **网络安全**:包括SSL/TLS协议,用于保护互联网上的通信安全。 2. **区块链技术**:密码学在区块链中的应用,如工作量证明(Proof of Work)和非对称密钥。 3. **安全存储**:如何使用加密技术安全地存储数据,例如在数据库中的加密技术。 4. **安全协议**:在不同计算平台间交换加密信息的协议,例如IPSec。 #### 密码学进阶主题 进阶主题可能包括: 1. **密码学中的数学基础**:素数、群、环、域以及椭圆曲线等数学概念。 2. **密码分析**:研究攻击加密系统的方法,包括已知明文攻击、选择明文攻击等。 3. **量子密码学**:探讨量子计算对当前加密算法的影响,以及量子安全的加密技术。 #### 文档内容细节 从压缩包子文件列表来看,文档内容可能按照章节或主题进行分割,例如: - **APPLYC12.pdf** 和 **APPLYC11.pdf** 可能涵盖了密码学的基础知识和基本概念。 - **APPLYC3.pdf** 和 **APPLYC4.pdf** 可能讨论了对称加密算法以及实现的案例和方法。 - **APPLYC2.pdf** 和 **APPLYC5.pdf** 可能深入讲解了非对称加密技术,如RSA算法。 - **APPLYC13.pdf** 和 **APPLYC6.pdf** 可能包含了哈希函数和数字签名的详细描述。 - **APPLYC14.pdf** 和 **APPLYC9.pdf** 可能介绍了密码学在网络安全、区块链、安全存储和安全协议中的应用实例。 ### 结论 《应用密码学第二版》作为一本全面的密码学参考书,不仅为读者提供了密码学的基础理论知识,还深入探讨了这些理论在现实世界中的具体应用。通过阅读这本书籍,读者将能够更好地理解密码学的原理,并学会如何在实际中运用这些知识来解决安全问题。特别是对于那些希望在信息安全领域深造的学习者来说,该书无疑是一份宝贵的资源。通过对压缩包子文件列表的分析,我们可以看到这本书覆盖了广泛的加密算法和技术,使其成为密码学爱好者的必读之作。
recommend-type

LSTM网络结构选择指南:让锂电池寿命预测更准确

# 摘要 长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),近年来因其在序列数据处理上的卓越性能受到广泛关注。本文首先介绍了LSTM网络的基础知识及在锂电池寿命预测中的应用概述。随后深入探讨了LSTM的理论框架、关键技术、网络结构选择与优化。文中详细分析了锂电池寿命预测的数据处理流程、模型
recommend-type

大物公式

<think>首先,用户意图是查找大学物理相关公式,用户问题是“大学物理常用公式汇总”。我需要根据任务要求进行网络搜索,整合内容,生成回答。 任务要求关键点: - 调用网络搜索工具进行检索。 - 整合内容,生成详细、清晰、实用、可操作的回答。 - 禁止将所有引用内容集中在回答末尾;引用应该分散在回答中。 - 避免使用第一人称(如“我”)。 - 避免步骤词汇(如“首先”、“然后”)。 - 组织答案为多个方法或步骤,每个步骤间换行。 - 对于公式和代码:行内公式用$ $,独立公式用$$ $$;代码用三个反引号注明语言。 - 回答后添加“§§相关问题§§:”部分,列出至少3个相关问题,基于用户问题
recommend-type

全面掌握西门子PLC技术的中文培训资料

西门子是全球知名的电气工程和电子公司,以生产自动化设备、驱动和控制技术等工业产品而著称。在自动化领域,西门子的可编程逻辑控制器(PLC)尤为著名,是工业自动化系统中的核心设备之一。以下是从提供的文件信息中提炼出的知识点。 1. 西门子PLC技术介绍 - 西门子PLC是指西门子生产的一系列可编程逻辑控制器,包括S7-1200、S7-1500等型号,广泛应用于各种自动化生产、加工和监测系统。 - PLC技术是工业自动化领域的核心技术之一,用于替代传统的继电器逻辑控制,通过软件编程实现对工业过程的控制。 - PLC具备高可靠性、高稳定性和灵活的可扩展性,适合各种复杂控制任务。 2. 西门子PLC编程基础 - 西门子PLC编程通常采用STEP 7、TIA Portal等专业软件,支持梯形图、功能块图、语句列表等多种编程语言。 - 用户需要掌握基本的PLC硬件知识,例如CPU、数字/模拟输入输出模块、通讯模块等的配置和使用方法。 - 理解基本的编程概念,如I/O映射、变量存储、数据类型以及模块化编程等。 3. 西门子PLC的网络通讯 - 熟悉西门子PLC的网络通讯协议,如PROFINET、Profibus等,以及如何在不同设备间实现数据交换和设备互联。 - 网络通讯是实现工业4.0和智能制造的关键技术,对于实现远程监控和数据采集(SCADA)系统非常重要。 - 学习如何配置网络参数、故障诊断和维护通讯系统。 4. 西门子PLC的高级应用 - 进阶知识包括PID控制、运动控制、数据记录和故障诊断等高级功能。 - 掌握如何应用西门子PLC在特定工业场景中的高级控制策略,比如在纺织、包装、汽车制造等行业。 - 学习如何使用HMI(人机界面)与PLC交互,设计直观的操作界面,提高操作便利性和效率。 5. 西门子PLC的维护与故障排除 - 了解如何对西门子PLC进行日常检查和维护工作,以确保系统稳定运行。 - 学习如何使用诊断工具,对PLC及其外围设备进行故障检测和快速修复。 6. 西门子PLC培训的资源与支持 - 利用西门子官方提供的培训材料和在线资源,比如培训手册、视频教程、FAQ等。 - 参与西门子或授权的第三方培训机构组织的培训课程,以获取更加系统和深入的知识。 - 加入西门子技术支持社区和论坛,与其他工程师交流心得,解决遇到的技术难题。 综上所述,西门子中文培训资料内容涵盖了从基础理论到高级应用、从硬件操作到软件编程、从系统配置到故障排除的全方位知识。这些资料不仅适合自动化领域的初学者,也为经验丰富的工程师提供了复习和拓展知识的途径。学习西门子PLC技术能够提高个人的市场竞争力,同时也为推动工业自动化和智能制造的发展做出贡献。
recommend-type

揭秘LSTM预测锂电池RUL:一步到位的实现秘籍

# 摘要 本文综合论述了使用长短期记忆网络(LSTM)对锂电池剩余使用寿命(RUL)进行预测的理论和实践方法。首先介绍了锂电池衰退的基本理论和衰退机制,然后深入探讨了LSTM的网络结构及在RUL预测中的应用,包括数据预处理、模型设计、评估与优化。实战演练部分详细描述了数据集的准备、模型编码实现和预测结果的解读。最后,本文展望了LSTM在该领域的未来发展方