活动介绍

class Model(nn.Module): def __init__(self, config): super(Model, self).__init__() if config.embedding_pretrained is not None: self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False) else: self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1) self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers, bidirectional=True, batch_first=True, dropout=config.dropout) self.fc = nn.Linear(config.hidden_size * 2, config.num_classes) def forward(self, x): x, _ = x out = self.embedding(x) # [batch_size, seq_len, embeding]=[128, 32, 300] out, _ = self.lstm(out) out = self.fc(out[:, -1, :]) # 句子最后时刻的 hidden state return out

时间: 2024-01-10 14:03:59 浏览: 137
这段代码是一个基于 LSTM 的文本分类模型的实现,模型的输入是一个由文本数据构成的批次(batch),输出是这个批次中每个文本数据的分类结果。在该模型中,首先根据配置信息创建了一个 Embedding 层,用于将每个词汇映射为一个向量。如果配置信息中指定了预训练的 Embedding 权重,则使用预训练的权重;否则,随机初始化 Embedding 权重。接下来,将 Embedding 层的输出输入到一个多层 LSTM 网络中进行处理,得到每个文本数据的最后一个时刻上的 hidden state。最后,将这些 hidden state 输入到一个全连接层中进行分类,得到分类结果。在 forward 函数中,输入数据 x 是一个元组,其中第一个元素是输入数据,第二个元素是序列长度,但是在本模型中并没有用到序列长度,只用到了输入数据。在 forward 函数中,首先将输入数据输入到 Embedding 层中,得到词向量表达;然后将词向量表达输入到 LSTM 网络中进行处理,得到每个文本数据的 hidden state;最后,将 hidden state 输入到全连接层中进行分类,得到分类结果。
相关问题

def wrap_model_hub(model_cls: nn.Module): class HfModel(model_cls, PyTorchModelHubMixin): def __init__(self, config: dict): super().__init__(**config) self.config = config return HfModel

<think>好的,我现在需要解决用户的问题:如何使用PyTorchModelHubMixin封装自定义模型类,实现Hugging Face的模型集成功能。首先,我得回忆一下PyTorchModelHubMixin的作用。根据引用中的信息,Hugging Face的模型通常继承自PyTorch的Module类,并且导出时会生成config.json和pytorch_model.bin文件。这说明在封装自定义模型时,可能需要处理配置和参数的保存与加载。 用户提到想通过继承PyTorchModelHubMixin来包装模型类。我需要查阅Hugging Face的文档,确认这个Mixin的具体用法。通常,Mixin类会提供一些方法,比如save_pretrained和from_pretrained,用于保存和加载模型。因此,自定义模型类需要继承PyTorch的Module和这个Mixin,这样才能使用这些方法。 接下来,我需要考虑如何将模型的配置信息整合进去。根据引用3,config和model是紧密关联的,所以在保存模型时,除了参数文件,还需要保存config.json。可能需要在自定义模型类中添加一个config属性,并在保存时自动处理这个配置。 然后,代码示例部分需要展示如何定义类,重写必要的方法,比如保存配置和加载配置。例如,在save_pretrained方法中,除了保存模型权重,还要将config保存为JSON文件。在from_pretrained方法中,需要加载配置并初始化模型实例。 另外,用户可能需要知道如何将封装好的模型上传到Hugging Face Hub。引用5提到生成Token来下载模型,但这里需要上传,所以可能需要使用huggingface_hub库的login函数,并使用push_to_hub方法。这部分也需要在示例中体现。 还要注意错误处理,比如当模型没有配置时如何处理,或者路径是否存在等问题。但在基础示例中,可能先忽略这些,保持代码简洁。 最后,生成相关问题需要考虑用户可能的后续疑问,比如配置管理、上传模型、处理复杂结构等。这些需要根据步骤中的关键点来设计问题,帮助用户进一步探索。</think>### 分步说明:通过继承 `PyTorchModelHubMixin` 封装自定义模型 #### 1. **基础模型类定义** 需要让自定义模型类同时继承 `torch.nn.Module` 和 `PyTorchModelHubMixin`: ```python import torch from huggingface_hub import PyTorchModelHubMixin class CustomModel(torch.nn.Module, PyTorchModelHubMixin): def __init__(self, config): super().__init__() self.config = config self.layer = torch.nn.Linear(config["input_dim"], config["output_dim"]) def forward(self, x): return self.layer(x) ``` [^3]:HuggingFace 实现时尊重 PyTorch 原生 API #### 2. **配置管理** 通过 `_save_config` 和 `_load_config` 方法实现配置自动持久化: ```python class CustomModel(torch.nn.Module, PyTorchModelHubMixin): def _save_config(self, save_directory): import json with open(f"{save_directory}/config.json", "w") as f: json.dump(self.config, f) @classmethod def _load_config(cls, save_directory): import json with open(f"{save_directory}/config.json", "r") as f: return json.load(f) ``` #### 3. **模型上传与加载** ```python # 初始化模型 config = {"input_dim": 768, "output_dim": 10} model = CustomModel(config) # 保存到本地 model.save_pretrained("./custom_model") # 上传到 Hugging Face Hub model.push_to_hub("your-username/custom-model") # 从 Hub 加载模型 loaded_model = CustomModel.from_pretrained("your-username/custom-model") ``` [^2]:Hugging Face Transformers 提供模型加载/保存功能 #### 4. **进阶功能扩展** ```python class AdvancedModel(CustomModel): def __init__(self, config): super().__init__(config) self.dropout = torch.nn.Dropout(config["dropout_rate"]) def forward(self, x): x = super().forward(x) return self.dropout(x) ```

class EntityRankerClassifier(nn.Module): def __init__(self, n_classes, PRE_TRAINED_MODEL_NAME): super(EntityRankerClassifier, self).__init__() self.bert = AutoModel.from_pretrained(PRE_TRAINED_MODEL_NAME) self.drop = nn.Dropout(p=0.3) self.out = nn.Linear(self.bert.config.hidden_size, n_classes) def forward(self, input_ids, attention_mask): _, pooled_output = self.bert( input_ids=input_ids, attention_mask=attention_mask, return_dict=False ) output = self.drop(pooled_output) return self.out(output)

这是一个使用预训练的BERT模型进行分类的PyTorch模型,具体来说,该模型包含以下几个部分: 1. 初始化函数:接受两个参数,一个是输出类别数n_classes,一个是预训练模型的名称PRE_TRAINED_MODEL_NAME,通过调用父类初始化函数来初始化模型。 2. 模型结构:该模型使用预训练的BERT模型作为编码器,通过AutoModel.from_pretrained函数加载预训练模型,并将输入的文本序列input_ids和注意力掩码attention_mask传入BERT模型中,得到BERT模型的输出。这里使用的是BERT模型的池化输出pooled_output,即将所有单词的输出取平均得到的一维向量,作为文本的表示。接着通过一个Dropout层进行正则化,最后通过一个全连接层进行分类。 3. 前向传播函数:接受两个参数,一个是文本序列input_ids,一个是注意力掩码attention_mask,将这两个参数传入模型结构中,得到模型的输出。 需要注意的是,在使用该模型进行分类时,需要将输入的文本序列转换为对应的input_ids和attention_mask,可以使用tokenizer将文本序列转换为模型所需的格式。在训练模型时,需要使用交叉熵损失函数和优化器对模型进行训练。
阅读全文

相关推荐

import torch import torch.nn as nn import torch.nn.init as init from TransformerBlock import MultiheadAttention from .NeuralNetwork import NeuralNetwork import torch.nn.functional as F from .GAT import GATConv import torch_geometric.utils as utils class Attention(nn.Module): def __init__(self, in_features, hidden_size): super(Attention, self).__init__() self.linear1 = nn.Linear(in_features*2, hidden_size) self.linear2 = nn.Linear(hidden_size, 1) self.activation = nn.ReLU() self.dropout = nn.Dropout(0.5) self.reset_parameters() def reset_parameters(self): init.xavier_normal_(self.linear1.weight) init.xavier_normal_(self.linear2.weight) def forward(self, K, V, mask = None): ''' :param K: (batch_size, d) :param V: (batch_size, hist_len, d) :return: (batch_size, d) ''' K = K.unsqueeze(dim=1).expand(V.size()) fusion = torch.cat([K, V], dim=-1) fc1 = self.activation(self.linear1(fusion)) score = self.linear2(fc1) if mask is not None: mask = mask.unsqueeze(dim=-1) score = score.masked_fill(mask, -2 ** 32 + 1) alpha = F.softmax(score, dim=1) alpha = self.dropout(alpha) att = (alpha * V).sum(dim=1) return att class GLAN(NeuralNetwork): def __init__(self, config, graph): super(GLAN, self).__init__() self.config = config embedding_weights = config['embedding_weights'] V, D = embedding_weights.shape maxlen = config['maxlen'] dropout_rate = config['dropout'] alpha = 0.4 self.graph = graph self.word_embedding = nn.Embedding(V, D, padding_idx=0, _weight=torch.from_numpy(embedding_weights)) self.user_tweet_embedding = nn.Embedding(graph.num_nodes, 300, padding_idx=0) self.mh_attention = MultiheadAttention(input_size=300, output_size=300) self.linear_fuse = nn.Lin

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]中的 SA_modules的forward函数接受几个参数,为什么

class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]在forward函数中,如果我要使用channel_out变量传入SA_modules中,我该如何在forward函数中计算并得到它,再传入SA_modules中,你可以给我详细的代码吗?

代码出现问题:(style_tune) C:\Users\28996\Desktop\AI\persona_contrastive_finetuning>python Contrastive_Training_LM.py INFO:accelerate.utils.modeling:We will use 90% of the memory on device 0 for storing the model, and 10% for the buffer to avoid OOM. You can set max_memory in to a higher value to use more memory (at your own risk). trainable params: 1,572,864 || all params: 1,838,401,536 || trainable%: 0.0856 训练集样本示例: {'anchor_input_ids': [56568, 118919, 116122, 11319], 'positive_input_ids': [116122, 20412, 107340, 9370, 100357, 102323, 3837, 109202, 104078, 103975, 100675, 101940, 100912, 105054, 6313], 'negative_input_ids': [100323, 104307, 99245, 9370, 106059, 104060, 3837, 104530, 115604, 99329, 11319]} 验证集样本示例: {'anchor_input_ids': [56568, 118919, 116122, 11319], 'positive_input_ids': [116122, 20412, 107340, 9370, 100357, 102323, 3837, 109202, 104078, 103975, 100675, 101940, 100912, 105054, 6313], 'negative_input_ids': [100323, 104307, 99245, 9370, 106059, 104060, 3837, 104530, 115604, 99329, 11319]} Trainer.tokenizer is now deprecated. You should use Trainer.processing_class = processing_class instead. INFO:__main__:GPU内存使用: 已分配 2.93GB, 保留 4.13GB 可训练参数列表: - base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.3.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.3.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.4.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.4.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.4.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.4.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.5.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.5.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.5.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.5.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.6.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.6.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.6.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.6.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.7.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.7.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.7.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.7.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.8.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.8.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.8.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.8.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.9.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.9.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.9.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.9.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.10.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.10.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.10.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.10.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.11.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.11.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.11.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.11.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.12.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.12.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.12.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.12.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.13.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.13.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.13.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.13.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.14.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.14.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.14.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.14.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.15.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.15.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.15.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.15.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.16.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.16.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.16.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.16.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.17.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.17.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.17.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.17.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.18.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.18.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.18.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.18.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.19.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.19.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.19.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.19.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.20.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.20.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.20.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.20.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.21.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.21.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.21.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.21.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.22.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.22.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.22.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.22.self_attn.v_proj.lora_B.default.weight - base_model.model.model.layers.23.self_attn.q_proj.lora_A.default.weight - base_model.model.model.layers.23.self_attn.q_proj.lora_B.default.weight - base_model.model.model.layers.23.self_attn.v_proj.lora_A.default.weight - base_model.model.model.layers.23.self_attn.v_proj.lora_B.default.weight 0%| | 0/3 [00:00<?, ?it/s]You're using a Qwen2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the __call__ method is faster than using a method to encode the text followed by a call to the pad method to get a padded encoding. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.00GB, 保留 4.21GB Could not estimate the number of tokens of the input, floating-point operations will not be computed Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.02GB, 保留 4.22GB 33%|████████████████████████████ | 1/3 [00:03<00:06, 3.25s/it]Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.01GB, 保留 4.25GB Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.02GB, 保留 4.26GB 67%|████████████████████████████████████████████████████████ | 2/3 [00:06<00:02, 2.98s/it]Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.01GB, 保留 4.25GB Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. Trainer.tokenizer is now deprecated. You should use Trainer.processing_class instead. INFO:__main__:GPU内存使用: 已分配 4.02GB, 保留 4.26GB {'train_runtime': 9.034, 'train_samples_per_second': 0.664, 'train_steps_per_second': 0.332, 'train_loss': 1.0772175788879395, 'epoch': 3.0} 100%|████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:09<00:00, 3.01s/it] Traceback (most recent call last): File "C:\Users\28996\Desktop\AI\persona_contrastive_finetuning\Contrastive_Training_LM.py", line 356, in <module> eval_results = trainer.evaluate() File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\trainer.py", line 4076, in evaluate output = eval_loop( File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\trainer.py", line 4270, in evaluation_loop losses, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\trainer.py", line 4496, in prediction_step outputs = model(**inputs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\accelerate\utils\operations.py", line 818, in forward return model_forward(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\accelerate\utils\operations.py", line 806, in __call__ return convert_to_fp32(self.model_forward(*args, **kwargs)) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\amp\autocast_mode.py", line 44, in decorate_autocast return func(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\peft\peft_model.py", line 1719, in forward return self.base_model( File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\peft\tuners\tuners_utils.py", line 197, in forward return self.model.forward(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\models\qwen2\modeling_qwen2.py", line 816, in forward outputs = self.model( File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1736, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\torch\nn\modules\module.py", line 1747, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\28996\miniconda3\envs\style_tune\lib\site-packages\transformers\models\qwen2\modeling_qwen2.py", line 521, in forward raise ValueError("You must specify exactly one of input_ids or inputs_embeds") ValueError: You must specify exactly one of input_ids or inputs_embeds (style_tune) C:\Users\28996\Desktop\AI\persona_contrastive_finetuning>python Contrastive_Training_LM.py Traceback (most recent call last): File "C:\Users\28996\Desktop\AI\persona_contrastive_finetuning\Contrastive_Training_LM.py", line 57, in <module> class ContrastiveTrainer(Trainer): File "C:\Users\28996\Desktop\AI\persona_contrastive_finetuning\Contrastive_Training_LM.py", line 63, in ContrastiveTrainer eval_dataset: Optional[Dataset] = None, NameError: name 'Dataset' is not defined 原代码如下:import torch import torch.nn as nn import torch.nn.functional as F from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, PreTrainedTokenizerBase, BitsAndBytesConfig ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.utils import PaddingStrategy from datasets import load_dataset from typing import Any, Dict, List, Optional, Tuple, Union import logging from dataclasses import dataclass import os import gc from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training @dataclass class EvalDataCollator: """评估专用的数据收集器""" tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None return_tensors: str = "pt" def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]: # 评估时只使用正样本(用于语言建模评估) positive_features = [{"input_ids": f["positive_input_ids"]} for f in features] # 对正样本进行填充 batch_positive = self.tokenizer.pad( positive_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) # 创建注意力掩码 attention_mask = (batch_positive["input_ids"] != self.tokenizer.pad_token_id).int() # 创建标签(用于语言建模) labels = batch_positive["input_ids"].clone() labels[labels == self.tokenizer.pad_token_id] = -100 return { "input_ids": batch_positive["input_ids"], "attention_mask": attention_mask, "labels": labels } class ContrastiveTrainer(Trainer): """内存优化的训练器""" # ... [保持其他方法不变] ... def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", ) -> Dict[str, float]: """重写评估方法以使用专用的数据收集器""" # 创建评估专用的数据收集器 eval_data_collator = EvalDataCollator( tokenizer=self.tokenizer, max_length=256, padding="max_length" ) # 临时保存原始数据收集器 original_collator = self.data_collator try: # 使用评估专用的数据收集器 self.data_collator = eval_data_collator # 调用父类的评估方法 return super().evaluate( eval_dataset=eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix ) finally: # 恢复原始数据收集器 self.data_collator = original_collator # 设置日志 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # 内存优化工具函数 def clear_memory(): """清除Python和CUDA缓存""" gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() def print_memory_usage(): """打印当前内存使用情况""" if torch.cuda.is_available(): allocated = torch.cuda.memory_allocated() / (1024 ** 3) reserved = torch.cuda.memory_reserved() / (1024 ** 3) logger.info(f"GPU内存使用: 已分配 {allocated:.2f}GB, 保留 {reserved:.2f}GB") else: logger.info("未检测到GPU") def tokenize_function(examples, tokenizer, max_length=256): """将文本转换为token IDs""" tokenized = {} # 对每个字段进行分词 for key in ['anchor', 'positive', 'negative']: if key in examples: # 使用分词器处理文本 result = tokenizer( examples[key], max_length=max_length, truncation=True, padding=False, return_tensors=None ) tokenized[f"{key}_input_ids"] = result["input_ids"] return tokenized @dataclass class ContrastiveDataCollator: """内存优化的数据收集器""" tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None return_tensors: str = "pt" def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]: # 分离出三元组的各个部分 anchor_features = [{"input_ids": f["anchor_input_ids"]} for f in features] positive_features = [{"input_ids": f["positive_input_ids"]} for f in features] negative_features = [{"input_ids": f["negative_input_ids"]} for f in features] # 对每个部分分别进行填充 batch_anchor = self.tokenizer.pad( anchor_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) batch_positive = self.tokenizer.pad( positive_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) batch_negative = self.tokenizer.pad( negative_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors=self.return_tensors, ) # 创建注意力掩码 def create_attention_mask(input_ids): return (input_ids != self.tokenizer.pad_token_id).int() # 释放中间变量内存 del anchor_features, positive_features, negative_features clear_memory() return { "anchor_input_ids": batch_anchor["input_ids"], "anchor_attention_mask": create_attention_mask(batch_anchor["input_ids"]), "positive_input_ids": batch_positive["input_ids"], "positive_attention_mask": create_attention_mask(batch_positive["input_ids"]), "negative_input_ids": batch_negative["input_ids"], "negative_attention_mask": create_attention_mask(batch_negative["input_ids"]), } class ContrastiveTrainer(Trainer): """内存优化的训练器""" def __init__(self, tokenizer=None, *args, contrastive_config=None, **kwargs): # 首先调用父类初始化 super().__init__(*args, **kwargs) # 关键修复:设置tokenizer self.tokenizer = tokenizer if contrastive_config is None: contrastive_config = {} # 设置默认值 self.temperature = contrastive_config.get("temperature", 0.07) self.margin = contrastive_config.get("margin", 0.3) self.contrastive_weight = contrastive_config.get("weight", 0.8) self.repr_layer = contrastive_config.get("repr_layer", -1) # 验证必要参数 if not hasattr(self.model.config, "output_hidden_states") or not self.model.config.output_hidden_states: raise ValueError("模型必须设置output_hidden_states=True") self.cross_entropy = nn.CrossEntropyLoss() def compute_contrastive_loss(self, anchor_emb, pos_emb, neg_emb): """计算对比损失""" # 计算余弦相似度 pos_sim = F.cosine_similarity(anchor_emb, pos_emb) neg_sim = F.cosine_similarity(anchor_emb, neg_emb) # 计算InfoNCE损失 numerator = torch.exp(pos_sim / self.temperature) denominator = numerator + torch.exp(neg_sim / self.temperature) info_nce_loss = -torch.log(numerator / (denominator + 1e-8)).mean() # 计算三元组损失 triplet_loss = F.relu(neg_sim - pos_sim + self.margin).mean() return info_nce_loss + triplet_loss def get_sequence_representation(self, outputs, attention_mask): """获取序列表示(内存优化版)""" # 只获取需要的隐藏状态层 hidden_states = outputs.hidden_states[self.repr_layer] # 获取每个序列的最后一个非填充token seq_lengths = attention_mask.sum(dim=1) - 1 batch_indices = torch.arange(hidden_states.size(0)) # 返回对应位置的隐藏状态 return hidden_states[batch_indices, seq_lengths] def compute_loss(self, model, inputs, return_outputs=False): """内存优化的损失计算""" # 确保模型处于训练模式 model.train() # 提取输入 anchor_ids = inputs["anchor_input_ids"] anchor_mask = inputs["anchor_attention_mask"] positive_ids = inputs["positive_input_ids"] positive_mask = inputs["positive_attention_mask"] negative_ids = inputs["negative_input_ids"] negative_mask = inputs["negative_attention_mask"] # 前向传播获取隐藏状态 def get_embeddings(input_ids, attention_mask): outputs = model( input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True, return_dict=True ) return self.get_sequence_representation(outputs, attention_mask) # 获取三元组的嵌入表示 anchor_emb = get_embeddings(anchor_ids, anchor_mask) pos_emb = get_embeddings(positive_ids, positive_mask) neg_emb = get_embeddings(negative_ids, negative_mask) # 计算对比损失 cl_loss = self.compute_contrastive_loss(anchor_emb, pos_emb, neg_emb) cl_loss = cl_loss * self.contrastive_weight # 关键修复:确保tokenizer已设置 if self.tokenizer is None: raise ValueError("Tokenizer未设置!") # 计算语言建模损失 lm_labels = positive_ids.clone() # 关键修复:使用tokenizer的pad_token_id pad_token_id = self.tokenizer.pad_token_id lm_labels[lm_labels == pad_token_id] = -100 # 计算语言建模损失 lm_outputs = model( input_ids=positive_ids, attention_mask=positive_mask, labels=lm_labels ) lm_loss = lm_outputs.loss # 总损失 = LM损失 + 对比损失 total_loss = lm_loss + cl_loss # 记录内存使用 print_memory_usage() return (total_loss, lm_outputs) if return_outputs else total_loss # ================ 主程序 ================ # if __name__ == "__main__": # 配置量化以减少内存使用 bnb_config = BitsAndBytesConfig( load_in_4bit=True, # 使用4位量化 bnb_4bit_quant_type="nf4", # 使用NF4量化类型 bnb_4bit_use_double_quant=True, # 双重量化 bnb_4bit_compute_dtype=torch.float16 # 计算使用FP16 ) # 加载模型和分词器(使用量化) model = AutoModelForCausalLM.from_pretrained( "model/Qwen/Qwen1.5-1.8B", quantization_config=bnb_config, # 应用量化配置 device_map="auto", # 自动选择设备 output_hidden_states=True, # 必须设置以获取隐藏状态 return_dict_in_generate=True, use_cache=False # 禁用缓存以节省内存 ) tokenizer = AutoTokenizer.from_pretrained("model/Qwen/Qwen1.5-1.8B") tokenizer.pad_token = tokenizer.eos_token # 设置填充token # 为量化模型添加LoRA适配器 lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], # 针对Qwen1.5-1.8B模型 lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) # 关键修复:准备模型用于k位训练 model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True) # 添加LoRA适配器 model = get_peft_model(model, lora_config) # 关键修复:显式启用LoRA参数的梯度 for param in model.parameters(): if param.requires_grad: param.requires_grad = True model.print_trainable_parameters() # 打印可训练参数数量 # 加载数据集 def load_and_tokenize_dataset(file_path, tokenizer): """加载数据集并进行分词处理""" # 加载原始数据集 dataset_dict = load_dataset('json', data_files=file_path) raw_dataset = dataset_dict['train'] # 应用分词函数 tokenized_dataset = raw_dataset.map( lambda ex: tokenize_function(ex, tokenizer, max_length=256), batched=True, batch_size=8, # 减小批处理大小 remove_columns=['anchor', 'positive', 'negative'] ) return tokenized_dataset train_dataset = load_and_tokenize_dataset('data/processed/train_style_triplets.json', tokenizer) val_dataset = load_and_tokenize_dataset('data/processed/val_style_triplets.json', tokenizer) # 验证数据集格式 print("训练集样本示例:", train_dataset[0]) print("验证集样本示例:", val_dataset[0]) # 训练参数配置(内存优化) training_args = TrainingArguments( output_dir="./model/lora_adapter", per_device_train_batch_size=1, # 减小批量大小 gradient_accumulation_steps=8, # 增加梯度累积步数 num_train_epochs=3, learning_rate=2e-4, logging_steps=10, # 更频繁的日志记录以监控内存 save_steps=500, fp16=True, report_to="none", remove_unused_columns=False, gradient_checkpointing=True, # 启用梯度检查点 optim="adafactor", # 使用内存更少的优化器 ) # 对比学习配置 contrastive_config = { "temperature": 0.07, "margin": 0.3, "weight": 0.8, "repr_layer": -1 } # 初始化数据收集器 data_collator = ContrastiveDataCollator( tokenizer=tokenizer, max_length=256, # 减少最大长度 padding="max_length" ) # 初始化训练器 - 关键修复:传递tokenizer trainer = ContrastiveTrainer( model=model, args=training_args, tokenizer=tokenizer, # 传递tokenizer data_collator=data_collator, train_dataset=train_dataset, eval_dataset=val_dataset, contrastive_config=contrastive_config ) # 开始训练前打印内存状态 print_memory_usage() # 关键修复:验证可训练参数 print("可训练参数列表:") for name, param in model.named_parameters(): if param.requires_grad: print(f"- {name}") # 开始训练 trainer.train() # 保存LoRA适配器 model.save_pretrained("./model/lora_adapter") # 评估模型 try: eval_results = trainer.evaluate() print("评估结果:", eval_results) except Exception as e: print(f"评估过程中发生错误: {e}") import traceback traceback.print_exc()

import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]

class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x) def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def init(self, input_channels=6, use_xyz=True): super().init() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.len()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.len()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] mlps.append(channel_out) self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.len()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule( mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k] ) )根据如上代码,如果要在Pointnet2MSG类中的forward函数调用SA_modules的话需要传入哪些参数,几个参数?

import torch import torch.nn as nn import librosa import numpy as np from torch.utils.data import Dataset , DataLoader from nemo.collections.tts.models import Tacotron2Model from nemo.collections.tts.models import WaveGlowModel import os # 配置参数 config = { "sr": 22050 , # 采样率 "batch_size": 8 , # 根据显存调整 "num_epochs": 500 , "gpu_id": 0 , "mel_dim": 80 , # 梅尔频谱维度 "text_embed_dim": 512 , # 文本编码维度 "max_text_len": 100 # 最大文本长度 } # 自定义数据集 class VoiceDataset(Dataset): def __init__(self , data_dir): self.files = [os.path.join(data_dir , f) for f in os.listdir(data_dir)] def __len__(self): return len(self.files) def __getitem__(self , idx): # 加载音频并转换为梅尔频谱 audio , sr = librosa.load(self.files[idx] , sr = config['sr']) mel = librosa.feature.melspectrogram( y = audio , sr = sr , n_mels = config['mel_dim']) mel = librosa.power_to_db(mel) # 生成随机文本嵌入(实际应使用真实文本) text_embed = torch.randn(config['text_embed_dim']) return { "mel": torch.FloatTensor(mel.T) , # (time, n_mels) "text": text_embed } # 初始化模型 device = torch.device(f"cuda:{config['gpu_id']}") class VoiceGenerator(nn.Module): def __init__(self): super().__init__() # 文本编码器 self.text_encoder = nn.Sequential( nn.Linear(config['text_embed_dim'] , 256) , nn.ReLU() , nn.Linear(256 , 512) ) # 声学模型(基于Tacotron2简化版) self.tacotron = Tacotron2Model.from_pretrained("tts_en_tacotron2").encoder # 声码器(基于WaveGlow简化版) self.vocoder = WaveGlowModel.from_pretrained("tts_waveglow_88m").generator def forward(self , text): # 文本编码 text_feat = self.text_encoder(text) # 生成梅尔频谱 mel_outputs , _ = self.tacotron(text_feat) # 生成波形 audio = self.vocoder(mel_outputs) return audio # 初始化系统 model = VoiceGenerator().to(device) optimizer = torch.optim.AdamW(model.parameters() , lr = 3e-4) criterion = nn.MSELoss() # 数据加载 dataset = VoiceDataset("training_data/sliced_audio") loader = DataLoader(dataset , batch_size = config['batch_size'] , shuffle = True) # 训练循环 for epoch in range(config['num_epochs']): for batch in loader: mels = batch['mel'].to(device) texts = batch['text'].to(device) # 前向传播 gen_audio = model(texts) # 计算损失 loss = criterion(gen_audio , mels) # 反向传播 optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters() , 1.0) optimizer.step() # 保存检查点 if epoch % 50 == 0: torch.save(model.state_dict() , f"voice_model_epoch{epoch}.pt") print(f"Epoch {epoch} | Loss: {loss.item():.4f}")X

最新推荐

recommend-type

langchain4j-core-0.36.0.jar中文文档.zip

1、压缩文件中包含: 中文文档、jar包下载地址、Maven依赖、Gradle依赖、源代码下载地址。 2、使用方法: 解压最外层zip,再解压其中的zip包,双击 【index.html】 文件,即可用浏览器打开、进行查看。 3、特殊说明: (1)本文档为人性化翻译,精心制作,请放心使用; (2)只翻译了该翻译的内容,如:注释、说明、描述、用法讲解 等; (3)不该翻译的内容保持原样,如:类名、方法名、包名、类型、关键字、代码 等。 4、温馨提示: (1)为了防止解压后路径太长导致浏览器无法打开,推荐在解压时选择“解压到当前文件夹”(放心,自带文件夹,文件不会散落一地); (2)有时,一套Java组件会有多个jar,所以在下载前,请仔细阅读本篇描述,以确保这就是你需要的文件。 5、本文件关键字: jar中文文档.zip,java,jar包,Maven,第三方jar包,组件,开源组件,第三方组件,Gradle,中文API文档,手册,开发手册,使用手册,参考手册。
recommend-type

【网络会计】网络会计特点分析.docx

【网络会计】网络会计特点分析.docx
recommend-type

《C语言》教案.doc

《C语言》教案.doc
recommend-type

《Spring-in-china》Seasons-PPT【品质课件PPT】.pptx

《Spring-in-china》Seasons-PPT【品质课件PPT】.pptx
recommend-type

C++实现的DecompressLibrary库解压缩GZ文件

根据提供的文件信息,我们可以深入探讨C++语言中关于解压缩库(Decompress Library)的使用,特别是针对.gz文件格式的解压过程。这里的“lib”通常指的是库(Library),是软件开发中用于提供特定功能的代码集合。在本例中,我们关注的库是用于处理.gz文件压缩包的解压库。 首先,我们要明确一个概念:.gz文件是一种基于GNU zip压缩算法的压缩文件格式,广泛用于Unix、Linux等操作系统上,对文件进行压缩以节省存储空间或网络传输时间。要解压.gz文件,开发者需要使用到支持gzip格式的解压缩库。 在C++中,处理.gz文件通常依赖于第三方库,如zlib或者Boost.IoStreams。codeproject.com是一个提供编程资源和示例代码的网站,程序员可以在该网站上找到现成的C++解压lib代码,来实现.gz文件的解压功能。 解压库(Decompress Library)提供的主要功能是读取.gz文件,执行解压缩算法,并将解压缩后的数据写入到指定的输出位置。在使用这些库时,我们通常需要链接相应的库文件,这样编译器在编译程序时能够找到并使用这些库中定义好的函数和类。 下面是使用C++解压.gz文件时,可能涉及的关键知识点: 1. Zlib库 - zlib是一个用于数据压缩的软件库,提供了许多用于压缩和解压缩数据的函数。 - zlib库支持.gz文件格式,并且在多数Linux发行版中都预装了zlib库。 - 在C++中使用zlib库,需要包含zlib.h头文件,同时链接z库文件。 2. Boost.IoStreams - Boost是一个提供大量可复用C++库的组织,其中的Boost.IoStreams库提供了对.gz文件的压缩和解压缩支持。 - Boost库的使用需要下载Boost源码包,配置好编译环境,并在编译时链接相应的Boost库。 3. C++ I/O操作 - 解压.gz文件需要使用C++的I/O流操作,比如使用ifstream读取.gz文件,使用ofstream输出解压后的文件。 - 对于流操作,我们常用的是std::ifstream和std::ofstream类。 4. 错误处理 - 解压缩过程中可能会遇到各种问题,如文件损坏、磁盘空间不足等,因此进行适当的错误处理是必不可少的。 - 正确地捕获异常,并提供清晰的错误信息,对于调试和用户反馈都非常重要。 5. 代码示例 - 从codeproject找到的C++解压lib很可能包含一个或多个源代码文件,这些文件会包含解压.gz文件所需的函数或类。 - 示例代码可能会展示如何初始化库、如何打开.gz文件、如何读取并处理压缩数据,以及如何释放资源等。 6. 库文件的链接 - 编译使用解压库的程序时,需要指定链接到的库文件,这在不同的编译器和操作系统中可能略有不同。 - 通常,在编译命令中加入-l参数,比如使用g++的话可能是`g++ -o DecompressLibrary DecompressLibrary.cpp -lz`,其中`-lz`表示链接zlib库。 7. 平台兼容性 - 在不同平台上使用解压库可能需要考虑平台兼容性问题。 - Windows系统可能需要额外的配置和库文件,因为zlib或其他库可能不是默认预装的。 根据以上知识点,我们可以得出,在C++中解压.gz文件主要涉及到对zlib或类似库的使用,以及熟悉C++的I/O操作。正确使用这些库,能够有效地对压缩文件进行解压,并处理可能出现的错误情况。如果从codeproject获取到的C++解压lib确实是针对.gz文件格式的,那么它很可能已经封装好了大部分的操作细节,让开发者能够以更简单的方式实现解压功能。
recommend-type

【数据融合技术】:甘肃土壤类型空间分析中的专业性应用

# 摘要 数据融合技术作为一种集成多源数据信息的方法,在土壤类型空间分析中发挥着关键作用。本文介绍了数据融合技术的基本概念及其理论基础,阐述了数据预处理、同步整合及冲突解决等关键技术,并详细描述了甘肃土壤类型数据准备的流程,包括数据采集、质量评估、空间化处理及融合实践准备。通过具体案例分析,展示了数据融合在土壤类型空间分布分析、土壤质量评估及土壤保护规划中的应用。同时,文
recommend-type

VM ware如何查看软件版本信息

<think>首先,用户的问题是:“我想查找VMware软件版本信息的查看方法请问如何在VMware中查看软件版本信息”。用户参考了之前的引用,但那些引用主要是关于查看VMware版本的一般方法,现在用户具体想知道在VMware软件中如何查看版本信息。回顾之前的对话:-用户第一次问的是VSCode的版本查看方法。-现在用户问的是VMware的版本查看方法。-系统级指令要求使用中文回答,正确格式化数学表达式(如果需要),但这里可能不需要数学表达式。-指令还要求生成相关问题,并在回答中引用段落时添加引用标识。用户提供的引用[1]到[5]是关于VMware版本的查看方法、下载等,但用户特别强调“参考
recommend-type

数据库课程设计报告:常用数据库综述

数据库是现代信息管理的基础,其技术广泛应用于各个领域。在高等教育中,数据库课程设计是一个重要环节,它不仅是学习理论知识的实践,也是培养学生综合运用数据库技术解决问题能力的平台。本知识点将围绕“经典数据库课程设计报告”展开,详细阐述数据库的基本概念、课程设计的目的和内容,以及在设计报告中常用的数据库技术。 ### 1. 数据库基本概念 #### 1.1 数据库定义 数据库(Database)是存储在计算机存储设备中的数据集合,这些数据集合是经过组织的、可共享的,并且可以被多个应用程序或用户共享访问。数据库管理系统(DBMS)提供了数据的定义、创建、维护和控制功能。 #### 1.2 数据库类型 数据库按照数据模型可以分为关系型数据库(如MySQL、Oracle)、层次型数据库、网状型数据库、面向对象型数据库等。其中,关系型数据库因其简单性和强大的操作能力而广泛使用。 #### 1.3 数据库特性 数据库具备安全性、完整性、一致性和可靠性等重要特性。安全性指的是防止数据被未授权访问和破坏。完整性指的是数据和数据库的结构必须符合既定规则。一致性保证了事务的执行使数据库从一个一致性状态转换到另一个一致性状态。可靠性则保证了系统发生故障时数据不会丢失。 ### 2. 课程设计目的 #### 2.1 理论与实践结合 数据库课程设计旨在将学生在课堂上学习的数据库理论知识与实际操作相结合,通过完成具体的数据库设计任务,加深对数据库知识的理解。 #### 2.2 培养实践能力 通过课程设计,学生能够提升分析问题、设计解决方案以及使用数据库技术实现这些方案的能力。这包括需求分析、概念设计、逻辑设计、物理设计、数据库实现、测试和维护等整个数据库开发周期。 ### 3. 课程设计内容 #### 3.1 需求分析 在设计报告的开始,需要对项目的目标和需求进行深入分析。这涉及到确定数据存储需求、数据处理需求、数据安全和隐私保护要求等。 #### 3.2 概念设计 概念设计阶段要制定出数据库的E-R模型(实体-关系模型),明确实体之间的关系。E-R模型的目的是确定数据库结构并形成数据库的全局视图。 #### 3.3 逻辑设计 基于概念设计,逻辑设计阶段将E-R模型转换成特定数据库系统的逻辑结构,通常是关系型数据库的表结构。在此阶段,设计者需要确定各个表的属性、数据类型、主键、外键以及索引等。 #### 3.4 物理设计 在物理设计阶段,针对特定的数据库系统,设计者需确定数据的存储方式、索引的具体实现方法、存储过程、触发器等数据库对象的创建。 #### 3.5 数据库实现 根据物理设计,实际创建数据库、表、视图、索引、触发器和存储过程等。同时,还需要编写用于数据录入、查询、更新和删除的SQL语句。 #### 3.6 测试与维护 设计完成之后,需要对数据库进行测试,确保其满足需求分析阶段确定的各项要求。测试过程包括单元测试、集成测试和系统测试。测试无误后,数据库还需要进行持续的维护和优化。 ### 4. 常用数据库技术 #### 4.1 SQL语言 SQL(结构化查询语言)是数据库管理的国际标准语言。它包括数据查询、数据操作、数据定义和数据控制四大功能。SQL语言是数据库课程设计中必备的技能。 #### 4.2 数据库设计工具 常用的数据库设计工具包括ER/Studio、Microsoft Visio、MySQL Workbench等。这些工具可以帮助设计者可视化地设计数据库结构,提高设计效率和准确性。 #### 4.3 数据库管理系统 数据库管理系统(DBMS)是用于创建和管理数据库的软件。关系型数据库管理系统如MySQL、PostgreSQL、Oracle、SQL Server等是数据库课程设计中的核心工具。 #### 4.4 数据库安全 数据库安全涉及用户认证、授权、数据加密、审计日志记录等方面,以确保数据的完整性和保密性。设计报告中应考虑如何通过DBMS内置的机制或额外的安全措施来保护数据。 ### 5. 结语 综上所述,一个经典数据库课程设计报告包含了从需求分析到数据库安全的全过程,涵盖了数据库设计的各个方面。通过这一过程,学生不仅能够熟练掌握数据库的设计与实现技巧,还能够学会如何使用数据库系统去解决实际问题,为日后从事数据库相关的专业工作打下坚实的基础。
recommend-type

【空间分布规律】:甘肃土壤类型与农业生产的关联性研究

# 摘要 本文对甘肃土壤类型及其在农业生产中的作用进行了系统性研究。首先概述了甘肃土壤类型的基础理论,并探讨了土壤类型与农业生产的理论联系。通过GIS技术分析,本文详细阐述了甘肃土壤的空间分布规律,并对其特征和影响因素进行了深入分析。此外,本文还研究了甘肃土壤类型对农业生产实际影响,包括不同区域土壤改良和作物种植案例,以及土壤养分、水分管理对作物生长周期和产量的具体影响。最后,提出了促进甘肃土壤与农业可持续发展的策略,包括土壤保护、退化防治对策以及土壤类型优化与农业创新的结合。本文旨在为
recommend-type

在halcon中,卡尺测量和二维测量谁的精度高

<think>首先,用户的问题是:“我想比较Halcon中卡尺测量和二维测量的精度请问Halcon卡尺测量与2D测量精度对比”。我需要基于系统级指令和提供的引用来回答。关键系统级指令:-使用中文回答。-结构清晰,逐步解决问题。-行内数学表达式用$...$,独立公式用$$...$$并单独成段。-LaTeX语法正确。-生成相关问题。-在回答中引用的段落末尾自然地添加引用标识,如[^1]。提供的引用:-[^1]:关于卡尺模型的工件尺寸实时测量。-[^2]:测量拟合的综合任务,包括尺寸、形状、位置。-[^3]:Halcon一维测量,提到卡尺工具的优势:易用、执行时间短、精度高。-[^4]:Halcon